
CA-IDMS®
DML Reference — PL/I

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . ix

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-1
1.1 Overview . 1-3

1.1.1 Batch processing . 1-3
1.1.2 Online processing . 1-4

1.2 Programming in the CA-IDMS environment 1-5
1.2.1 Navigational DML . 1-5
1.2.2 SQL DML . 1-6
1.2.3 LRF DML . 1-7
1.2.4 CA-IDMS/DC statements . 1-8

1.3 Compiling and executing programs . 1-9
1.3.1 Compiling programs . 1-9
1.3.2 Executing programs . 1-11

Chapter 2. DML Precompiler Options . 2-1
2.1 Overview . 2-3
2.2 Dictionary ready override . 2-4
2.3 PL/I compiler option usage . 2-5
2.4 Comment generation . 2-6
2.5 List generation . 2-7
2.6 Log suppression . 2-8

Chapter 3. Communications Blocks and Error Detection 3-1
3.1 Overview . 3-3
3.2 Communications blocks . 3-4

3.2.1 IDMS-DB communications block . 3-4
3.2.2 LRC block . 3-11
3.2.3 IDMS-DC communications block . 3-12

3.3 ERROR_STATUS field and codes . 3-17
3.3.1 Database status codes . 3-17
3.3.2 Data communications status codes . 3-22

3.4 Error detection . 3-28
3.5 The effects of non-zero status on IDMS_STATUS 3-30

Chapter 4. Required PL/I Declaratives . 4-1
4.1 Overview . 4-3
4.2 DECLARE IDMS . 4-4
4.3 DECLARE IDMSPLI . 4-5
4.4 DECLARE IDMSDCP . 4-6
4.5 DECLARE SQLXQ1 . 4-7
4.6 DECLARE ADDR BUILTIN . 4-8
4.7 DECLARE ABORT . 4-9
4.8 DECLARE IDMSP . 4-10

Chapter 5. DML Precompiler-Directive Statements 5-1
5.1 Overview . 5-3

Contents iii

5.2 DECLARE SUBSCHEMA . 5-4
5.3 DECLARE MAP . 5-7
5.4 INCLUDE IDMS . 5-8
5.5 INCLUDE IDMS (MAP_BINDS) . 5-15
5.6 INCLUDE IDMS MODULE . 5-16
5.7 INCLUDE IDMS (SUBSCHEMA_BINDS) 5-18
5.8 INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS) 5-19

Chapter 6. Data Manipulation Language Statements 6-1
6.1 Overview . 6-3
6.2 Functions of DML statements . 6-4
6.3 DML statements grouped by function . 6-6

6.3.1 DML statements (database) . 6-6
6.3.2 DML statements (data communications) 6-8

6.4 ABEND (DC/UCF) . 6-13
6.5 ACCEPT (DC/UCF) . 6-14
6.6 ACCEPT BIND RECORD . 6-16
6.7 ACCEPT DBKEY FROM CURRENCY 6-17
6.8 ACCEPT DBKEY RELATIVE TO CURRENCY 6-19
6.9 ACCEPT IDMS STATISTICS . 6-21
6.10 ACCEPT PAGE_INFO . 6-23
6.11 ACCEPT PROCEDURE CONTROL LOCATION 6-24
6.12 ACCEPT TRANSACTION STATISTICS (DC/UCF) 6-25
6.13 ATTACH (DC/UCF) . 6-28
6.14 BIND MAP (DC/UCF) . 6-30
6.15 BIND PROCEDURE . 6-32
6.16 BIND RECORD . 6-34
6.17 BIND RUN_UNIT . 6-36
6.18 BIND TASK (DC/UCF) . 6-39
6.19 BIND TRANSACTION STATISTICS (DC/UCF) 6-40
6.20 CHANGE PRIORITY (DC/UCF) . 6-41
6.21 CHECK TERMINAL (DC/UCF) . 6-42
6.22 COMMIT . 6-43
6.23 CONNECT . 6-44
6.24 DC RETURN (DC/UCF) . 6-47
6.25 DELETE QUEUE (DC/UCF) . 6-50
6.26 DELETE SCRATCH (DC/UCF) . 6-51
6.27 DELETE TABLE (DC/UCF) . 6-53
6.28 DEQUEUE (DC/UCF) . 6-54
6.29 DISCONNECT . 6-55
6.30 END LINE TERMINAL SESSION (DC/UCF) 6-58
6.31 END TRANSACTION STATISTICS (DC/UCF) 6-59
6.32 ENDPAGE (DC/UCF) . 6-60
6.33 ENQUEUE (DC/UCF) . 6-61
6.34 ERASE . 6-64
6.35 ERASE (LRF) . 6-70
6.36 FIND/OBTAIN . 6-72

6.36.1 FIND/OBTAIN CALC/DUPLICATE 6-72
6.36.2 FIND/OBTAIN CURRENT . 6-74
6.36.3 FIND/OBTAIN DBKEY . 6-77
6.36.4 FIND/OBTAIN OWNER . 6-79

iv CA-IDMS DML Reference — PL/I

6.36.5 FIND/OBTAIN WITHIN SET USING SORT KEY 6-81
6.36.6 FIND/OBTAIN WITHIN SET/AREA 6-83

6.37 FINISH . 6-89
6.38 FREE STORAGE (DC/UCF) . 6-91
6.39 GET . 6-92
6.40 GET QUEUE (DC/UCF) . 6-94
6.41 GET SCRATCH (DC/UCF) . 6-97
6.42 GET STORAGE (DC/UCF) . 6-100
6.43 GET TIME (DC/UCF) . 6-104
6.44 IF . 6-106
6.45 INQUIRE MAP (DC/UCF) . 6-108

6.45.1 Moving map-related data . 6-108
6.45.2 Testing for global map input conditions 6-110
6.45.3 Testing for cursor position . 6-111
6.45.4 Testing for input error conditions 6-112

6.46 KEEP . 6-116
6.47 KEEP LONGTERM (DC/UCF) . 6-117
6.48 LOAD TABLE (DC/UCF) . 6-122
6.49 MAP IN (DC/UCF) . 6-124
6.50 MAP OUT (DC/UCF) . 6-129
6.51 MAP OUTIN (DC/UCF) . 6-135
6.52 MODIFY MAP (DC/UCF) . 6-138
6.53 MODIFY RECORD . 6-146
6.54 MODIFY RECORD (LRF) . 6-149
6.55 OBTAIN (LRF) . 6-151
6.56 POST (DC/UCF) . 6-154
6.57 PUT QUEUE (DC/UCF) . 6-155
6.58 PUT SCRATCH (DC/UCF) . 6-157
6.59 READ LINE FROM TERMINAL (DC/UCF) 6-159
6.60 READ TERMINAL (DC/UCF) . 6-161
6.61 READY . 6-164
6.62 RETURN (DC/UCF) . 6-167
6.63 ROLLBACK . 6-170
6.64 SEND MESSAGE (DC/UCF) . 6-172
6.65 SET TIMER (DC/UCF) . 6-175
6.66 SNAP (DC/UCF) . 6-179
6.67 STARTPAGE (DC/UCF) . 6-181
6.68 STORE RECORD . 6-184
6.69 STORE RECORD (LRF) . 6-188
6.70 TRANSFER (DC/UCF) . 6-190
6.71 WAIT (DC/UCF) . 6-193
6.72 WRITE JOURNAL (DC/UCF) . 6-195
6.73 WRITE LINE TO TERMINAL (DC/UCF) 6-197
6.74 WRITE LOG (DC/UCF) . 6-200
6.75 WRITE PRINTER (DC/UCF) . 6-205
6.76 WRITE TERMINAL (DC/UCF) . 6-209
6.77 WRITE THEN READ TERMINAL (DC/UCF) 6-211
6.78 Logical-record clauses (WHERE and ON) 6-215

6.78.1 WHERE . 6-215
6.78.2 ON clause . 6-219

Contents v

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-1
A.1 About this appendix . A-3
A.2 Compiling a PL/I program . A-4

A.2.1 Under OS/390 . A-6
A.2.2 Under VSE/ESA . A-10
A.2.3 Under VM/ESA . A-17

A.3 Link-edit considerations . A-20

Appendix B. Call Formats . B-1
B.1 About this appendix . B-3
B.2 CA-IDMS/DB call formats . B-4

B.2.1 Control statements . B-5
B.2.2 Modification statements . B-7
B.2.3 Retrieval statements . B-8
B.2.4 ACCEPT statements . B-11
B.2.5 LRF DML statements . B-12

B.3 CA-IDMS/DC call formats . B-13
B.3.1 Program management statements . B-14
B.3.2 Storage management statements . B-14
B.3.3 Task management statements . B-15
B.3.4 Time management statements . B-15
B.3.5 Scratch management statistics . B-15
B.3.6 Queue management statements . B-16
B.3.7 Terminal management statements . B-17
B.3.8 Utility statements . B-18
B.3.9 Recovery statements . B-19
B.3.10 DC_BATCH statement . B-19

Appendix C. Keywords . C-1
C.1 About this appendix . C-3

Appendix D. Notes to Teleprocessing Monitor Users D-1
D.1 About this appendix . D-3

Appendix E. Sample Programs and Database Definition E-1
E.1 About this appendix . E-3
E.2 CA-IDMS/DC programming considerations E-4
E.3 Sample batch program . E-6

E.3.1 Batch input to the DML precompiler E-7
E.3.2 Output from the DML precompiler E-10
E.3.3 Output from the PL/I compiler . E-13

E.4 Sample online program . E-18
E.4.1 Application components . E-18
E.4.2 Application runtime requirements . E-19
E.4.3 Online input to the DML precompiler E-21
E.4.4 Output from the DML precompiler E-23
E.4.5 Output from the PL/I compiler . E-25

E.5 EMPLOYEE database definition . E-31

Appendix F. Considerations for IBM Language Environment F-1
F.1 Overview . F-3

vi CA-IDMS DML Reference — PL/I

F.2 Considerations about LE runtime . F-4
F.3 Running LE-compliant compiler programs under CA-IDMS/DC F-5
F.4 Supported LE functions . F-13
F.5 Unsupported LE functions . F-14

Appendix G. 18-Byte Communications Blocks G-1
G.1 Overview . G-3

Index . X-1

Contents vii

viii CA-IDMS DML Reference — PL/I

How to Use This Manual

How to Use This Manual ix

What this manual is about

This document presents navigational and LRF DML statements for use in
CA-IDMS/DB database and CA-IDMS/DC and CA-IDMS/UCF data communication
environments.

Most data communication DML statements are applicable in both CA-IDMS/DC and
CA-IDMS/UCF environments. The acronym DC/UCF is used to represent this.

x CA-IDMS DML Reference — PL/I

Who should use this manual

This document is intended for use by PL/I programmers who run programs against
CA-IDMS/DB databases and who want to use the DC/UCF system facilities.

How to Use This Manual xi

What this manual contains

This manual contains six chapters and seven appendices:

■ Introduction to the CA-IDMS Data Manipulation Language (Chapter 1)

An overview of the facilities for preparing, compiling, and executing PL/I
applications under CA-IDMS/DB and CA-IDMS/DC

■ DML Precompiler Options (Chapter 2)

A description of the precompiler options available in the database/data
communications PL/I environment

■ Communications Blocks and Error Detection (Chapter 3)

A discussion of the communications blocks and error detection routines available
in the database/data communications PL/I environment

■ Required PL/I Declaratives (Chapter 4)

Descriptions of the PL/I declarative statements required to program in the
CA-IDMS/DB environment

■ DML Precompiler-Directive Statements (Chapter 5)

Instructions for using DML precompiler-directive statements

■ Data Manipulation Language Statements (Chapter 6)

Descriptions of the database and data communications PL/I DML commands,
including syntax, resulting status codes, examples, and information on the impact
of commands on currency

■ DML Precompile, PL/I Compile, and Link-Edit JCL (Appendix A)

■ Call Formats (Appendix B)

Call-format expansions for PL/I DML statements

■ Keywords (Appendix C)

A list of CA-IDMS/DB and CA-IDMS/DC keywords and reserved words

■ Notes to Teleprocessing Monitor Users (Appendix D)

An outline of program specifications required to run CA-IDMS/DB and
CA-IDMS/DC PL/I programs under CICS, INTERCOMM, SHADOW, and
TASK/MASTER

■ Sample Programs and Database Definition (Appendix E)

– Sample Batch Program

A sample PL/I program that retrieves database records by using DML
statements

– Sample Online Program

A sample PL/I program that retrieves logical records by using Logical Record
Facility DML statements

– EMPLOYEE Database Definition

xii CA-IDMS DML Reference — PL/I

A data structure diagram

■ Considerations for IBM Language Environment (Appendix F)

An explanation of the IBM Language Environment and how to use it with
CA-IDMS/DC

■ 18-Byte Communications Blocks (Appendix G)

An explanation of the 18-byte IDMS-DB and IDMS-DC communications blocks

How to Use This Manual xiii

How to proceed

1. Read Chapter 1 for an overview of programming in the CA-IDMS/DB
environment.

2. Use Chapters 2, 3, 4, and 5 for details relevant to PL/I programming in the
CA-IDMS/DB environment.

3. Refer to syntax, syntax rules, and examples in Chapter 6, as needed, when coding
DML statements.

4. Refer to supplemental information provided in the appendices, as needed.

xiv CA-IDMS DML Reference — PL/I

 Related documents

For more information related to this manual, refer to the following documents:

■ CA-IDMS Messages and Codes

■ CA-IDMS installation manual for your operating system

■ CA-IDMS System Generation

■ CA-IDMS System Operations

■ CA-IDMS Navigational DML Programming

■ CA-IDMS Mapping Facility

■ CA-IDMS Database Administration

■ IDD DDDL Reference

How to Use This Manual xv

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─↓─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─↓─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

xvi CA-IDMS DML Reference — PL/I

Sample syntax diagram

How to Use This Manual xvii

xviii CA-IDMS DML Reference — PL/I

Chapter 1. Introduction to CA-IDMS Data
Manipulation Language

1.1 Overview . 1-3
1.1.1 Batch processing . 1-3
1.1.2 Online processing . 1-4

1.2 Programming in the CA-IDMS environment 1-5
1.2.1 Navigational DML . 1-5
1.2.2 SQL DML . 1-6
1.2.3 LRF DML . 1-7
1.2.4 CA-IDMS/DC statements . 1-8

1.3 Compiling and executing programs . 1-9
1.3.1 Compiling programs . 1-9
1.3.2 Executing programs . 1-11

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-1

1-2 CA-IDMS DML Reference — PL/I

1.1 Overview

 1.1 Overview

The CA-IDMS Data Manipulation Language (DML) consists of statements that direct
CA-IDMS/DB database and data communications processing. You code DML
statements in the program source as if they are a part of the host language. You use
the DML PL/I compiler (also called the DMLP processor) to convert DML statements
into standard PL/I statements. The DMLP processor also performs source-level error
checking.

Your program uses different sets of DML statements, depending on whether its
operating environment is batch or online. For example, a batch program uses only
database DML statements. An online program uses data communications DML
statements and can also use database DML statements.

 1.1.1 Batch processing

Batch processing typically involves large volumes of transactions, sequential
processing, and output in the form of files and reports. Batch programs use database
DML statements only. Chapter 6, “Data Manipulation Language Statements” on
page 6-1 contains all the DML commands, listed alphabetically. In this list,
CA-IDMS/DC DML commands are distinguished from CA-IDMS/DB DML
commands.

The following figure illustrates the flow of a typical batch application. Input to
DEPTRPT consists of department IDs. Output consists of a listing of departments and
their employees. The error report lists the department IDs of missing and empty
departments.

Typical batch program flow

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-3

1.1 Overview

 1.1.2 Online processing

Online processing typically involves transaction requests entered from terminals
connected directly to the computer, transaction results displayed at the terminal,
multiple requests from multiple sources, and sharing one copy of a program among
multiple users. Additionally, online processing is immediate. The processing of large
volumes of transactions from multiple online users requires fast response time. Online
programs use data communications DML statements and can include database DML
statements.

The following figure illustrates the flow of a typical online application. EMPDISP
retrieves information for an operator-specified employee ID. Output to the terminal
consists of DEPARTMENT, EMPLOYEE, JOB, and OFFICE information.

Typical online program flow

1-4 CA-IDMS DML Reference — PL/I

1.2 Programming in the CA-IDMS environment

1.2 Programming in the CA-IDMS environment

CA-IDMS statements are either database or data communications statements. This
section provides overview information and a more detailed subsection on each of the
three types of database DML statements and on data communications statements.

Database statements: Database statements perform retrieval and update functions
in either the batch or the online environment. These statements access database
records and sets, one record at a time.

The three types of database statements are as follows:

 ■ Navigational DML

 ■ SQL DML

■ Logical Record Facility DML

You can include database DML statements in batch programs or combine them with
data communications DML statements in online programs that require database access.

Data communications statements: Data communications statements request data
communications services, such as services for online programs.

Note: If you use a teleprocessing (TP) monitor other than CA-IDMS/DC, use
CA-IDMS/DB DML statements only. Your TP monitor provides data
communications services.

�� For information on accessing CA-IDMS/DC queues and printers from batch
programs, see Chapter 5, “DML Precompiler-Directive Statements” on page 5-1.

 1.2.1 Navigational DML

Navigational DML statements allow you to access database records and sets one record
at a time, and to check and maintain currency in order to assure correct results.
Navigational DML statements give you control over error checking and flexibility in
choosing database access strategy. To use this type of DML statement, you must have
a thorough knowledge of the database structure. For an example of a data structure
diagram, see Appendix E, “Sample Programs and Database Definition” on page E-1.

Navigational DML statements provide:

■ Control over error checking You can check on the results of processing each
statement.

■ Flexibility in choosing database access strategy You can enter the database
either sequentially (area sweep) by using a symbolic-key value (CALC or index),
or by using a database-key value (DIRECT).

There are four types of navigational DML statements:

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-5

1.2 Programming in the CA-IDMS environment

■ Control statements initiate and terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions.

■ Retrieval statements locate data in the database and make it available to the
application program.

■ Modification statements update the database.

■ Accept statements pass database keys, storage address information, and statistics
to the program.

Example of navigational DML statements: The following figure illustrates a
database structure containing two owner records (EMPLOYEE and JOB) that share
one member record (EMPOSITION), and lists the statements used to find employee
and job information. To obtain EMPLOYEE and JOB information, you would retrieve
an EMPLOYEE record, the first EMPOSITION record in the EMP_EMPOSITION set,
and the owner record in the JOB_EMPOSITION set.

 1.2.2 SQL DML

You can use SQL DML to access the same databases you access using navigational
DML. Additionally, you can use SQL DML to access databases that have been
defined using SQL DDL.

Using SQL DML, you do not have to be familiar with database structure and your
programs do not have to include database navigation logic.

You can perform the following functions using SQL DML statements:

 ■ Select rows

 ■ Update rows

 ■ Delete rows

1-6 CA-IDMS DML Reference — PL/I

1.2 Programming in the CA-IDMS environment

 ■ Insert rows

�� For more information about SQL DML statements, refer to the CA-IDMS SQL
Reference. For information about embedding SQL statements in application programs,
refer to CA-IDMS SQL Programming.

 1.2.3 LRF DML

LRF (Logical Record Facility) statements allow you to access fields from multiple
database records as if they are data fields in a single record. You specify selection
criteria (using the WHERE clause) to access only the logical records you need.

Using LRF, you do not have to be familiar with database structure and your programs
do not have to include database navigation logic.

This manual describes these LRF DML statements:

■ ERASE deletes a logical record as specified in the path definition

■ MODIFY modifies a logical record as specified in the path definition

■ OBTAIN retrieves a logical record as specified in the path definition

■ STORE stores a logical record as specified in the path definition

Note: You must use the 48-character set for PL/I programs containing LRF DML
(see 2.3, “PL/I compiler option usage” on page 2-5).

�� For information on path definition, refer to the CA-IDMS Navigational DML
Programming document. For complete information on the Logical Record Facility,
refer to the CA-IDMS Logical Record Facility document.

Example of LRF DML statements: The following figure illustrates the
EMP_JOB_LR record. This record is a logical LRF record that contains the
EMPLOYEE record, OFFICE record, and JOB record.

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-7

1.2 Programming in the CA-IDMS environment

 1.2.4 CA-IDMS/DC statements

CA-IDMS/DC and CA-IDMS/UCF are fully integrated with CA-IDMS/DB and the
dictionary. They allow you to request both data communications and database services
through standard subroutine calls generated (by the DML precompiler) from DML
statements.

Example of a PL/I data stream with CA-IDMS/DC statements: The following
is a typical PL/I data stream containing DML statements. The CA-IDMS/DC MAP
IN, MAP OUT, and DC RETURN statements map in a user-specified employee ID,
retrieve and display the specified information, and perform a DC RETURN naming
TSK02 as the next task to be performed.

BIND MAP (EMPMAPLR);

BIND MAP (EMPMAPLR) RECORD (EMPLOYEE);

ACCEPT TASK CODE INTO (TASK_CODE_IN);

IF TASK_CODE_IN = 'TSK�1' THEN

GO TO INITIAL_MAPOUT;

MAP IN (EMPMAPLR);

 .

 .

 .

Database DML statements

 .

 .

 .

MAP OUT (EMPMAPLR)

OUTPUT DATA YES

MESSAGE (DISPLAY_MESSAGE) LENGTH (8�);

DC RETURN NEXT TASK CODE ('TSK�2');

Types of online CA-IDMS/DC statements: Online CA-IDMS/DC statements
request that the DC/UCF system perform data communications services. There are
nine types of online CA-IDMS/DC DML statements:

■ Program management statements govern flow of control and abend processing.

■ Storage management statements allocate and release variable storage.

■ Task management statements provide runtime services that enhance control over
task processing.

■ Time management statements obtain the time and date, and define time-related
events.

■ Scratch management statements create, delete, or retrieve records from the
scratch area.

■ Queue management statements create, delete, or retrieve records in a queue area.

■ Terminal management statements transfer data between the application program
and a terminal.

■ Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to database records.

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure.

1-8 CA-IDMS DML Reference — PL/I

1.3 Compiling and executing programs

1.3 Compiling and executing programs

A PL/I program contains PL/I code and DML statements. The DML precompiler
converts DML statements into PL/I CALL statements and copies information
maintained in the dictionary into the source file. You can then compile, link edit, and
execute the application program. The compilation and runtime processes are described
separately below.

 1.3.1 Compiling programs

These three components prepare a PL/I DML program for execution:

■ The DML precompiler

■ The PL/I compiler

■ The linkage editor

Step 1 — DML precompiler

The DML precompiler converts DML statements: The DML precompiler converts
DML statements in the source program to PL/I CALL statements and copies
information maintained in the dictionary into the application program. For example,
the DML precompiler could copy database record descriptions, map records, map
definitions, and other predefined modules (such as communications blocks) into the
program.

Output from the DML precompiler is a source file, which serves as input to the PL/I
compiler, and an optional source listing. The output file differs from the source input
to the DML precompiler in the following ways:

■ Source code (such as the IDMS-DB communications block and the
IDMS_STATUS routine) has been added to the program.

■ DML statements have been replaced by PL/I CALL statements and changed to
comment entries.

Additionally, the DML precompiler produces a listing of the following errors:

■ Incorrect DML entries

■ Statements inconsistent with the program's declared subschema view

■ Any other error conditions detected during DMLP processing

■ Warning messages indicating source code conditions that could adversely affect
run units using the program

Step 2 — PL/I compiler

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-9

1.3 Compiling and executing programs

The PL/I compiler compiles the source into an object program: The PL/I
compiler compiles the source program after the DML precompiler has processed it
successfully. Output from the PL/I compiler consists of an object program and a
source listing that includes any generated diagnostics.

Step 3 — Linkage editor

The linkage editor links the object program: The linkage editor link edits the
object program into a specified load library. Output from the linkage editor consists of
a load module (or phase) and a link map.

�� See Appendix A, “DML Precompile, PL/I Compile, and Link-Edit JCL” on
page A-1 for the job control language required to execute each step listed here.

PL/I program compile: The following figure illustrates a PL/I program compile.

1-10 CA-IDMS DML Reference — PL/I

1.3 Compiling and executing programs

 1.3.2 Executing programs

At runtime, CA-IDMS requests are treated as application program subroutine calls.
When an application program executes a CA-IDMS/DB or CA-IDMS/DC subroutine
call, control passes to either CA-IDMS/DB or CA-IDMS/DC, which then processes the
requested function.

A CA-IDMS/DC program must be defined to the CA-IDMS/DC system in which it
will operate. The program can be defined either at system generation or at runtime by
using a DCMT VARY DYNAMIC PROGRAM command.

�� For information on DCMT VARY DYNAMIC PROGRAM, refer to the CA-IDMS
System Tasks and Operator Commands document.

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-11

1.3 Compiling and executing programs

PL/I features you cannot use: You cannot use the following PL/I features in
programs running under CA-IDMS/DC:

■ Any statement associated with file management: OPEN, CLOSE, DELETE,
LOCATE, RELEASE, UNLOCK

■ I/O statements: GET, READ, WRITE, REWRITE

■ Any special feature that could generate a supervisor call (SVC): DATE, FETCH,
DISPLAY, DELAY, WAIT, HALT, EVENT, COMPLETION, TIME, ATTN,
ONCOUNT, ONKEY, ONFILE, ONSYSLOG

■ The compile option: FLOW

■ SPIE and STAE options (the DC/UCF system detects all runtime errors.)

Using these features inhibits system performance and can cause the DC/UCF system to
abend.

1-12 CA-IDMS DML Reference — PL/I

Chapter 2. DML Precompiler Options

2.1 Overview . 2-3
2.2 Dictionary ready override . 2-4
2.3 PL/I compiler option usage . 2-5
2.4 Comment generation . 2-6
2.5 List generation . 2-7
2.6 Log suppression . 2-8

Chapter 2. DML Precompiler Options 2-1

2-2 CA-IDMS DML Reference — PL/I

2.1 Overview

 2.1 Overview

DML precompiler options are features of the DML programming environment that you
select to customize the environment for your application program. This chapter
describes these options and their associated syntax.

You code the DML precompiler options as special format entries in the PL/I source
code input to the DML precompiler. Use the compiler options to:

■ Override the DDLDML area default usage mode

■ Enable the printing of dictionary and subschema comments

■ Control the generation of DML precompiler source listings

■ Suppress the logging of program activity statistics

This chapter provides a discussion of each of the compiler options.

Chapter 2. DML Precompiler Options 2-3

2.2 Dictionary ready override

2.2 Dictionary ready override

The DDLDML area is the main area of the dictionary accessed by the DML
precompiler. Your application program can ready the DDLDML area using various
usage mode options. The default mode is shared update usage. Shared update usage
mode readies the DDLDML area for both retrieval and update. This mode also allows
concurrently executing run units to ready the DDLDML area in shared update or
shared retrieval usage mode. Your program can override the default usage mode by
specifying either retrieval or protected update usage.

 Syntax

��─┬─ /�RETRIEVAL�/ ────────┬───��

└─ /�PROTECTED_UPDATE�/ ─┘

Begin this syntax in column 2.

 Parameters

RETRIEVAL
Readies the DDLDML area for retrieval only. It allows other concurrently
executing run units to open the area in shared retrieval, shared update, protected
retrieval, or protected update usage modes.

Note: If your program readies the DDLDML area for retrieval only, no program
activity statistics can be logged.

PROTECTED_UPDATE
Readies the DDLDML area for both retrieval and update. It allows other
concurrently executing run units to ready the area in retrieval usage mode only.
The protected update usage mode prevents concurrent update of the area by run
units executing in the same DC/UCF system.

Specify the dictionary ready override statement before all source input statements.

2-4 CA-IDMS DML Reference — PL/I

2.3 PL/I compiler option usage

2.3 PL/I compiler option usage

The PROCESS statement is used to allow compile-time options to be specified for
each compilation. For more information on these options, see a PL/I programming
guide.

 Syntax

��─── � PROCESS options; ───��

Begin this syntax in column 1.

If you use the PROCESS statement, it must follow the dictionary ready override
statement. If you do not use the dictionary ready override statement, the PROCESS
statement must precede all source input statements.

Chapter 2. DML Precompiler Options 2-5

2.4 Comment generation

 2.4 Comment generation

SCHEMA_COMMENTS generates the printing of the dictionary and subschema
comments in a DML precompiler source listing.

 Syntax

��─── /�SCHEMA_COMMENTS�/ ──��

Begin this syntax in column 2.

Code the SCHEMA_COMMENTS statement after the dictionary ready override and
PROCESS CHARSET statements, if any, and before any source input statement.

Note: If you do not include the SCHEMA_COMMENTS statement in your source
program, the DML precompiler does not generate comment lines.

2-6 CA-IDMS DML Reference — PL/I

2.5 List generation

 2.5 List generation

The list generation option determines whether or not a DML source listing is
generated.

You can turn source listing generation on or off any number of times in your source
program. Do this by inserting appropriate NODMLIST/DMLIST entries in the code.

Note: DML always produces a listing of error messages. The DMLIST option
controls output of the processor source listing only.

 Syntax

��─┬─ /�NODMLIST�/ ← ─┬───��

└─ /�DMLIST�/ ──────┘

Begin this syntax in column 2.

 Parameters

NODMLIST
Tells the DML precompiler not to generate the source listing for the statements
that follow. NODMLIST is the default.

DMLIST
Tells the DML precompiler to generate the source listing for the statements that
follow.

Chapter 2. DML Precompiler Options 2-7

2.6 Log suppression

 2.6 Log suppression

The NO_ACTIVITY_LOG option suppresses the logging of program activity statistics.
The DML precompiler generates and logs the following program activity statistics
unless you use the NO_ACTIVITY_LOG option:

 ■ Program name

 ■ Language

■ Date last compiled

■ Number of lines

■ Number of compilations

 ■ Date created

■ Subschema name (if any)

 ■ File statistics

■ Database access statistics (records and modules copied from the dictionary;
subprograms called; and records, sets, and areas accessed by DML verbs)

Note: Program activity statistics cannot be logged if you ready the DDLDML area
for retrieval only or use a read-only dictionary. File activity statistics cannot
be logged if you code both registered and unregistered program files in one
OPEN statement.

 Syntax

��── /�NO_ACTIVITY_LOG�/ ───��

Begin this syntax in column 2.

The NO_ACTIVITY_LOG statement must follow the dictionary ready override and
PROCESS CHARSET statements, if any.

2-8 CA-IDMS DML Reference — PL/I

Chapter 3. Communications Blocks and Error
Detection

3.1 Overview . 3-3
3.2 Communications blocks . 3-4

3.2.1 IDMS-DB communications block . 3-4
3.2.2 LRC block . 3-11
3.2.3 IDMS-DC communications block . 3-12

3.3 ERROR_STATUS field and codes . 3-17
3.3.1 Database status codes . 3-17
3.3.2 Data communications status codes . 3-22

3.4 Error detection . 3-28
3.5 The effects of non-zero status on IDMS_STATUS 3-30

Chapter 3. Communications Blocks and Error Detection 3-1

3-2 CA-IDMS DML Reference — PL/I

3.1 Overview

 3.1 Overview

This chapter describes the communications blocks available under CA-IDMS/DC and
CA-IDMS/DB. These blocks return status information about requested database and
data communications services to the application program. This chapter also describes
the ERROR_STATUS field in the IDMS-DB and IDMS-DC communications blocks,
error codes, and error detection routines.

Chapter 3. Communications Blocks and Error Detection 3-3

3.2 Communications blocks

 3.2 Communications blocks

Communications blocks return status information about requested database
(CA-IDMS/DB) and data communications (CA-IDMS/DC and CA-IDMS/UCF)
services to the application program. Depending on the usage mode (LR, DML, or
MIXED) defined in the subschema, your program uses one or two of the following
blocks:

■ IDMS-DB communications block — The IDMS-DB communications block is
used when your program specifies the BATCH operating mode.

■ Logical-record request control (LRC) block — The LRC block is used when
the subschema usage mode is either LR or MIXED. The DML precompiler copies
the LRC block with either the IDMS-DB communications block (operating mode
of BATCH) or the IDMS-DC communications block (operating mode of
IDMS_DC or DC_BATCH).

■ IDMS-DC communications block — The IDMS-DC communications block is
used when your program specifies either IDMS_DC or DC_BATCH operating
mode.

Below, you will find a detailed discussion of these blocks. For more information on
operating modes, see 5.2, “DECLARE SUBSCHEMA” on page 5-4.

3.2.1 IDMS-DB communications block

Your program uses the IDMS-DB communications block when the operating mode is
BATCH. This communications block serves as an interface between the database
management system (DBMS) and your application program. Whenever a run unit
issues a call to the DBMS for a database operation, the DBMS returns information
about the outcome of the requested service to your program's IDMS-DB
communications block.

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_CTRL) of the IDMS-DB communications block from the data
dictionary into program variable storage. You accomplish this by coding an
INCLUDE IDMS (SUBSCHEMA_CTRL) statement in your program. For further
information on INCLUDE IDMS, see 5.4, “INCLUDE IDMS” on page 5-8.

You should examine the ERROR_STATUS field of the IDMS-DB communications
block after every call to the DBMS. Depending on the value contained in this field,
you should perform the IDMS_STATUS routine. For more information, see 3.3,
“ERROR_STATUS field and codes” on page 3-17, later in this chapter. For example,
if the ERROR_STATUS field contains the value 0307 while walking a set, your
program should perform end-of-set processing. Otherwise, your program should
perform the IDMS_STATUS routine.

Layout of the IDMS-DB communications block: The following figure shows
the layout of the 16-byte IDMS-DB communications block. Note that the layout of
the block differs for application programs running under CICS.

3-4 CA-IDMS DML Reference — PL/I

3.2 Communications blocks

�� For information about the 18-byte IDMS-DB communications block, see
Appendix G, “18-Byte Communications Blocks” on page G-1.

 ┌───────────────────────────────────────┐

│ IDMS-DB 16-byte communications block │

 └───────────────────────────────────────┘

 Length Suggested
 Field Data Type (bytes) Initial Value
 ┌──────────────┐

� │ 1 8 │ PROGRAM_NAME Alphanumeric 8 Program Name

 ├──────────┬───┘

 │ 9 12 │ ERROR_STATUS Alphanumeric 4 '14��'

 ├──────────┤

 │ 13 16 │ DBKEY Binary 4 (Fullword) ����

 ├──────────┴───────┐

│ 17 32 │ RECORD_NAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 33 48 │ AREA_NAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 49 64 │ ERROR_SET Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 65 8� │ ERROR_RECORD Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 81 96 │ ERROR_AREA Alphanumeric 16 Spaces

 ├──────────┬───────┘

�� │ 97 1�� │ PAGE_INFO Binary 4 (Fullword) ����

 └──────────┘

 ┌────────────┬────┬────┐

│ 97 │... │196 │ IDBMSCOM_AREA Alphanumeric 1�� Spaces

 ├──────────┬─┘ └────┘

 │ 197 2�� │ DIRECT_DBKEY Binary 4 (Fullword) ����

 └──────────┘

┌──────┬──────────────┐

│ │ 2�1 2�7 │ Reserved for system Alphanumeric 7 Spaces

│ ├─────┬────────┘

│ NON- │ 2�8 │ FILLER ... 1 ...

│ ├─────┴────┐

│ CICS │ 2�9 212 │ RECORD_OCCUR Binary 4 (Fullword) ����

│ ├──────────┤

│ │ 213 216 │ DML_SEQUENCE Binary 4 (Fullword) ����

└──────┴──────────┘

┌──────┬──────────────────┐

│ │ 2�1 216 │ FILLER ... 16 Spaces

│ ├──────────────┬───┘

│ │ 217 223 │ Reserved for system Alphanumeric 7 Spaces

│ ├─────┬────────┘

│ │ 224 │ FILLER ... 1 ...

│ CICS ├─────┴────┐

│ │ 225 228 │ RECORD_OCCUR Binary 4 (Fullword) ����

│ ├──────────┤

│ │ 229 232 │ DML_SEQUENCE Binary 4 (Fullword) ����

└──────┴──────────┘

� word aligned

�� PAGE_INFO_GROUP overlays bytes 97 and 98 and PAGE_INFO_DBK_FORMAT

overlays bytes 99 and 1��. Both of these fields are binary datatype,

each with a length of two bytes. Suggested initial values for

both are ��. Together these two fields represent PAGE_INFO.

Fields containing program status information: The IDMS-DB fields shown in
the following table contain program status information.

Chapter 3. Communications Blocks and Error Detection 3-5

3.2 Communications blocks

Field name Description

PROGRAM_NAME Alphanumeric field that contains the name of the program
being executed. The DML precompiler initializes this
field automatically, if the program contains an INCLUDE
IDMS (SUBSCHEMA_BINDS) statement. If you do not
include this statement in your program, you must
initialize the field.

ERROR_STATUS Alphanumeric field that contains a value indicating the
outcome of the last DML statement executed. The DML
precompiler initializes the ERROR_STATUS field to
1400. The DBMS updates this field after each database
service request and before returning control to the
program. The DBMS updates this field whether or not
the request was processed successfully.

For details on the ERROR_STATUS field and its use, see
3.3, “ERROR_STATUS field and codes” on page 3-17,
later in this chapter.

If your program consists of more than one run unit, it
must reinitialize the ERROR_STATUS field to 1400 after
finishing one run unit and before binding the next.

DBKEY Binary fullword field that contains the database key of the
last record accessed by the run unit. For example, after
successful execution of a FIND command, the DBMS
updates DBKEY with the database key of the located
record. If the call to the DBMS results in an error
condition, DBKEY remains unchanged.

RECORD_NAME Alphanumeric field that contains the name of the last
record successfully accessed by the run unit. This field is
left justified and padded with spaces on the right.

AREA_NAME Alphanumeric field that contains the name of the last area
successfully accessed by the run unit. This field is left
justified and padded with spaces on the right.

ERROR_SET Alphanumeric field that contains the name of the set
involved in the last operation that produced an error
condition. This field is left justified and padded with
spaces on the right.

ERROR_RECORD Alphanumeric field that contains the name of the record
involved in the last operation that produced an error
condition. This field is left justified and padded with
spaces on the right.

3-6 CA-IDMS DML Reference — PL/I

3.2 Communications blocks

Fields for non-CICS application programs: The IDMS-DB fields in the
following table should be used for non-CICS application programs.

Field name Description

ERROR_AREA Alphanumeric field that contains the name of the area
involved in the last operation that produced an error
condition. This field is left justified and padded with
spaces on the right.

IDBMSCOM_AREA Alphanumeric field that is used internally by the DBMS
for specification of runtime function information.

PAGE_INFO Two binary halfwords that represent the page information
associated with the last record accessed by the run unit.
PAGE_INFO is not changed if the call to the DBMS
results in a non-zero status. The first halfword
(PAGE_INFO_GROUP) represents the page group
number. The second halfword
(PAGE_INFO_DBK_FORMAT) represents the db-key
radix.

The db-key radix portion of the page information can be
used in interpreting a db-key for display purposes and in
formatting a db-key from page and line numbers. The
db-key radix represents the number of bits within a
db-key value that are reserved for the line number of a
record. By default, this value is 8, meaning that up to
255 records can be stored on a single page of the area.
Given a db-key, you can separate its associated page
number by dividing the db-key by 2 raised to the power
of the db-key radix. For example, if the db-key radix is
4, you would divide the db-key value by 2**4. The
resulting value is the page number of the db-key. To
separate the line number, you would multiply the page
number by 2 raised to the power of the db-key radix and
subtract this value from the db-key value. The result
would be the line number of the db-key. The following
two formulas can be used to calculate the page and line
numbers from a db-key value:
Page-number = db-key value / (2 �� db-key radix)

Line-number = db-key value - (page-number � (2 �� db-key radix))

DIRECT_DBKEY Binary fullword field that contains either a db-key value
that you specify or a null db-key value of -1. This field
is used to store records with a location mode of DIRECT.
Because the DBMS does not update this field, you must
initialize DIRECT_DBKEY. This field can be used only
when storing a record in a native VSAM relative record
data set (RRDS). You must initialize DIRECT_DBKEY
to the relative record number of the record being stored.

Chapter 3. Communications Blocks and Error Detection 3-7

3.2 Communications blocks

Fields for CICS application programs: The IDMS-DB fields in the following
table should be used for CICS application programs.

Updating fields in the IDMS-DB communications block: After a call to the
DBMS, one or more of these fields may have been updated, depending on the DML
statement issued and whether the statement executed successfully.

Example of updated fields: The following figure illustrates the IDMS-DB
communications block fields updated by successful and unsuccessful calls to the
DBMS; only those fields accessed by the runtime system are shown.

Key for this figure:

Field name Description

DATABASE_STATUS Alphanumeric field reserved for use by the DBMS.

FILLER Field used to ensure binary fullword alignment.

RECORD_OCCUR Binary fullword field that contains a record occurrence
sequence identifier used internally by the DBMS.

DML_SEQUENCE Binary fullword field that contains the source-level
sequence number generated by the DML precompiler.
The DML precompiler updates this field before each call
to the DBMS if you specify DEBUG in the DECLARE
SUBSCHEMA statement. The runtime system does not
use this field.

Field name Description

FILLER Work area reserved for use by CICS applications.

DATABASE_STATUS Alphanumeric field reserved for use by the DBMS.

FILLER Field used to ensure binary fullword alignment.

RECORD_OCCUR Binary fullword field that contains a record occurrence
sequence identifier used internally by the DBMS.

DML_SEQUENCE Binary fullword field that contains the source-level
sequence number generated by the DML precompiler.
The precompiler updates this field before each call to the
DBMS if you specify DEBUG in the DECLARE
SUBSCHEMA statement. The runtime system does not
use this field.

* If true, the field is set to zoned decimal zeroes (0000). If false, the field is
set to 1601.

0 The field is set to zoned decimal zeroes.

3-8 CA-IDMS DML Reference — PL/I

3.2 Communications blocks

Y The field is updated.

C The field is cleared to spaces.

N The field is set to null db-key value (-1)

nn Specific minor status code

Chapter 3. Communications Blocks and Error Detection 3-9

3.2 Communications blocks

 ┌───────────────────────────────────────┐┌──┐

 │ SUCCESSFUL ││ UNSUCCESSFUL │

 ├───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ P │ E │ D │ R │ A │ E │ E │ E │ P │ D ││ P │ E │ D │ R │ A │ E │ E │ E │ P │ D │

│ R │ R │ B │ E │ R │ R │ R │ R │ A │ I ││ R │ R │ B │ E │ R │ R │ R │ R │ A │ I │

│ O │ R │ K │ C │ E │ R │ R │ R │ G │ R ││ O │ R │ K │ C │ E │ R │ R │ R │ G │ R │

│ G │ O │ E │ O │ A │ O │ O │ O │ E │ E ││ G │ O │ E │ O │ A │ O │ O │ O │ E │ E │

│ R │ R │ Y │ R │ - │ R │ R │ R │ - │ C ││ R │ R │ Y │ R │ - │ R │ R │ R │ - │ C │

│ A │ - │ │ D │ N │ - │ R │ - │ I │ T ││ A │ - │ │ D │ N │ - │ - │ - │ I │ T │

│ M │ S │ │ - │ A │ S │ - │ A │ N │ - ││ M │ S │ │ - │ A │ S │ R │ A │ N │ - │

│ - │ T │ │ N │ M │ E │ R │ R │ F │ D ││ - │ T │ │ N │ M │ E │ E │ R │ F │ D │

│ N │ A │ │ A │ E │ T │ E │ E │ O │ B ││ N │ A │ │ A │ E │ T │ C │ E │ O │ B │

│ A │ T │ │ M │ │ │ C │ A │ │ K ││ A │ T │ │ M │ │ │ O │ A │ │ K │

│ M │ U │ │ E │ │ │ O │ │ │ E ││ M │ U │ │ E │ │ │ R │ │ │ E │

│ E │ S │ │ │ │ │ R │ │ │ Y ││ E │ S │ │ │ │ │ D │ │ │ Y │

│ │ │ │ │ │ │ D │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

┌─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Control statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ BIND RUN-UNIT │ │ O │ │ │ │ │ │ │ │ ││ │ 14nn │ │ │ │ │ │ │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ BIND RECORD │ │ O │ │ │ │ │ │ │ │ ││ │ 14nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ BIND PROCEDURE │ │ O │ │ │ │ │ │ │ │ ││ │ 14nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ READY │ │ O │ │ │ │ │ │ │ │ ││ │ �9nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ FINISH │ │ O │ N │ C │ │ C │ C │ C │ │ ││ │ �1nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ COMMIT (ALL) │ │ O │ N │ C │ │ C │ C │ C │ │ ││ │ 18nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ROLLBAK (CONTINUE) │ │ O │ N │ C │ │ C │ C │ C │ │ ││ │ 19nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ KEEP (EXCLUSIVE) │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �6nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ IF SET │ │ � │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 16nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ IF NOT SET │ │ � │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 16nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Retrieval statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ FIND/OBTAIN RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �3nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ GET RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �5nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ RETURN RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 17nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Modification statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ STORE RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 12nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ CONNECT RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �7nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ MODIFY RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �8nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ DISCONNECT RECORD │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 11nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ERASE RECORD │ │ O │ N │ Y │ Y │ C │ C │ C │ │ ││ │ �2nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Accept statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ ACCEPT DBKEY FROM CURRENCY │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT DBKEY REL TO CURRENCY│ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT IDMS STATISTICS │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT BIND RECORD │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT PROCEDURE │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 82nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT PAGE_INFO │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

└─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴┴───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┘

3-10 CA-IDMS DML Reference — PL/I

3.2 Communications blocks

 3.2.2 LRC block

Your program uses the logical-record request control (LRC) block when the subschema
usage mode is LR or MIXED. The LRC block provides an interface between the
Logical Record Facility (LRF) and the application program. It passes information
about a logical-record request to LRF and returns path status information about the
processing of the request to the program. You use the LRC block in conjunction with
the IDMS-DB or IDMS-DC communications block.

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_LR_CTRL) of the LRC block from the data dictionary into program
variable storage. You accomplish this by coding an INCLUDE IDMS
(SUBSCHEMA_LR_CTRL) statement in your program. For further information on
INCLUDE IDMS, see 5.4, “INCLUDE IDMS” on page 5-8.

You should examine the LR_STATUS field of the LRC block after every call to LRF
to determine the status of the call after processing. If the DBMS returns the value
LR_ERROR, you should examine the ERROR_STATUS field of the IDMS-DB or
IDMS-DC communications block.

Layout of the LRC block: The following figure shows the layout of the LRC
block.

 ┌───────────┐

│ LRC BLOCK │

 └───────────┘

 Length Suggested
 Field Data Type (bytes) Initial Value
 ┌───────┐

 │ 1 2 │ LRC-LRPXELNG Binary 2 (Halfword) ��

 ├───────┤

 │ 3 4 │ LRC-MAXVXP Binary 2 (Halfword) ��

 ├───────┴──┐

 │ 5 8 │ LRIDENT Alphanumeric 4 'LRC'

 ├──────────┴───┐

 │ 9 16 │ LRVERB Alphanumeric 8 Spaces

 ├──────────────┴────┐

│ 17 32 │ LRNAME Alphanumeric 16 Spaces

 ├───────────────────┤

 │ 33 48 │ LR-STATUS Alphanumeric 16 Spaces

 ├───────────────────┤

│ 49 64 │ FILLER ... 16 ...

 ├───┬───┬───────────┴─────┐

│ 65 ... (variable-length)│ PXE Mixed

 └───┴───┴─────────────────┘

� word aligned

Description of fields: The LRC block contains the fields described in the
following table.

Field name Description

LRC_LRPXELNG Specifies the length of the LRC block

LRC_MAXVXP Specifies the length of the work area required to evaluate
the WHERE clause.

Chapter 3. Communications Blocks and Error Detection 3-11

3.2 Communications blocks

Field name Description

LRIDENT Contains the constant LRC followed by a space.

LRVERB Contains the verb passed to the Logical Record Facility.

LRNAME Contains the name of the logical record being accessed.

LR_STATUS Contains the path status of a logical-record request. Path
statuses are 1- to 16-character strings; they can be either
standard or defined in the subschema by the DBA. LRF
provides three standard path statuses: LR_FOUND,
LR_NOT_FOUND, and LR_ERROR.

�� For more information on path statuses, see 6.78,
“Logical-record clauses (WHERE and ON)” on
page 6-215.

FILLER Work area used internally by the Logical Record Facility.

PXE (WHERE clause) Contains the expansion of the WHERE clause; it can
contain from 0 to 512 1-byte elements. The 512-byte
limit can be raised or lowered by using the SIZE
parameter of the INCLUDE IDMS
(SUBSCHEMA_LR_CTRL) statement.

�� For more information on the SIZE parameter and the
INCLUDE IDMS statement, see 5.4, “INCLUDE IDMS”
on page 5-8.

3.2.3 IDMS-DC communications block

The IDMS-DC communications block replaces the IDMS-DB communications block
when the operating mode is either IDMS_DC or DC_BATCH. At runtime, the
DC/UCF system uses the IDMS-DC communications block to pass information about
the outcome of requested data communications and database services to an application
program.

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_CTRL) of the IDMS-DC communications block from the dictionary
into program variable storage. You accomplish this by coding an INCLUDE IDMS
(SUBSCHEMA_CTRL) statement in your program. For further information on
INCLUDE IDMS, see 5.4, “INCLUDE IDMS” on page 5-8.

You should examine the ERROR_STATUS field of the IDMS-DC communications
block after every call to the DBMS. Depending on the value contained in this field,
you should perform the IDMS_STATUS routine. For more information, see 3.3,
“ERROR_STATUS field and codes” on page 3-17, later in this chapter.

Layout of the IDMS-DC communications block: The following figure shows
the layout of the 16-byte IDMS-DC communications block.

3-12 CA-IDMS DML Reference — PL/I

3.2 Communications blocks

�� For information about the 18-byte IDMS-DC communications block, see
Appendix G, “18-Byte Communications Blocks” on page G-1.

 ┌──┐

│ 16-byte IDMS-DC communications block │

 └──┘

 Length Suggested
 Field Data Type (bytes) Initial Value
 ┌──────────────┐

� │ 1 8 │ PROGRAM Alphanumeric 8 Program Name

 ├──────────┬───┘

 │ 9 12 │ ERROR_STATUS Alphanumeric 4 '14��'

 ├──────────┤

│ 13 16 │ DBKEY Binary 4 (Fullword) ����

 ├──────────┴───────┐

 │ 17 32 │ RECORD_NAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 33 48 │ AREA_NAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 49 64 │ ERROR_SET Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 65 8� │ ERROR_RECORD Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 81 96 │ ERROR_AREA Alphanumeric 16 Spaces

 ├──────────────────┘

�� │ 97 1�� │ PAGE_INFO Binary 4 (Fullword) ����

 └──────────┘

 ┌────────────┬────┬────┐

│ 97 │... │196 │ IDBMSCOM_AREA Alphanumeric 1�� Spaces

 ├──────────┬─┘ └────┘

 │ 197 2�� │ DIRECT_DBKEY Binary 4 ����

 ├──────────┴─┐ ┌────┐

│ 2�1 │... │3�� │ DCBMSCOM_AREA Alphanumeric 1�� Spaces

 ├──────────┬─┘ └────┘

 │ 3�1 3�4 │ SSC_ERRSTAT_SAVE Alphanumeric 4 Spaces

 ├──────────┤

 │ 3�5 3�8 │ SSC_DMLSEQ_SAVE Binary 4 (Fullword) ����

 ├──────────┤

 │ 3�9 312 │ DML_SEQUENCE Binary 4 (Fullword) ����

 ├──────────┤

 │ 313 316 │ RECORD_OCCUR Binary 4 (Fullword) ����

 ├──────────┤

 │ 317 32� │ SUBSCHEMA_CTRL_END Alphanumeric 4 Spaces

 └──────────┘

� word aligned

�� PAGE_INFO_GROUP overlays bytes 97 and 98 and PAGE_INFO_DBK_FORMAT

overlays bytes 99 and 1��. Both of these fields are binary datatype each

having a length of two bytes. Suggested initial values for

both are ��. Together these two fields represent PAGE_INFO.

Description of fields: The IDMS-DC communications block contains the fields
described in the following table.

Field name Description

PROGRAM Contains your application program's name. If you
code an INCLUDE IDMS(SUBSCHEMA_BINDS)
statement in your program, the DML precompiler
initializes this field automatically. If you do not
include this statement in your program, you must
initialize the field.

Chapter 3. Communications Blocks and Error Detection 3-13

3.2 Communications blocks

Field name Description

ERROR_STATUS Contains a value indicating the outcome of the last
DML statement executed. The DML precompiler
initializes the ERROR_STATUS field to 1400. The
DC/UCF system updates this field after a requested
database or data communications service call and
before returning control to your program. The
DC/UCF system updates this field whether or not the
request was processed successfully.

If your program consists of more than one run unit, it
must reinitialize the ERROR_STATUS field to 1400
after finishing one run unit and before binding to the
next.

�� For details on the ERROR_STATUS field and its
use, see 3.3, “ERROR_STATUS field and codes” on
page 3-17, later in this chapter.

DBKEY Contains the database key of the last record accessed
by the run unit. For example, after successful
execution of a FIND command, the DBMS updates
DBKEY with the database key of the located record.
If the database call results in an error condition,
DBKEY remains unchanged.

RECORD_NAME Contains the name of the last record accessed
successfully by the run unit. This field is left justified
and padded with spaces on the right.

AREA_NAME Contains the name of the last area accessed
successfully by the run unit. This field is left justified
and padded with spaces on the right.

ERROR_SET Contains the name of the set involved in the last
operation to produce an error condition. This field is
left justified and padded with spaces on the right.

ERROR_RECORD Contains the name of the record involved in the last
operation to produce an error condition. This field is
left justified and padded with spaces on the right.

ERROR_AREA Contains the name of the area involved in the last
operation to produce an error condition. This field is
left justified and padded with spaces on the right.

IDBMSCOM_AREA Used internally by the DBMS for specification of
runtime information.

3-14 CA-IDMS DML Reference — PL/I

3.2 Communications blocks

Field name Description

PAGE_INFO Two binary halfwords that represent the page
information associated with the last record accessed
by the run unit. PAGE_INFO is not changed if the
call to the DBMS results in a non-zero status. The
first halfword (PAGE_INFO_GROUP) represents the
page group number. The second halfword
(PAGE_INFO_DBK_FORMAT) represents the db-key
radix.

The db-key radix portion of the page information can
be used in interpreting a db-key for display purposes
and in formatting a db-key from page and line
numbers. The db-key radix represents the number of
bits within a db-key value that are reserved for the
line number of a record. By default, this value is 8,
meaning that up to 255 records can be stored on a
single page of the area. Given a db-key, you can
separate its associated page number by dividing the
db-key by 2 raised to the power of the db-key radix.
For example, if the db-key radix is 4, you would
divide the db-key value by 2**4. The resulting value
is the page number of the db-key. To separate the
line number, you would multiply the page number by
2 raised to the power of the db-key radix and subtract
this value from the db-key value. The result would
be the line number of the db-key. The following two
formulas can be used to calculate the page and line
numbers from a db-key value:
Page-number = db-key value / (2 �� db-key radix)

Line-number = db-key value - (page-number � (2 �� db-key radix))

DIRECT_DBKEY Contains either a user-specified db-key value or a null
db-key value of -1. This field is used to store records
with a location mode of DIRECT. Because the
DC/UCF does not update this field, you must
initialize DIRECT_DBKEY.

A note for native VSAM users: use the
DIRECT_DBKEY field only when storing a record in
a native VSAM relative record dataset (RRDS). You
must initialize DIRECT_DBKEY to the relative
record number of the record being stored.

DCBMSCOM_AREA Used internally by the DC/UCF system for
specification of runtime function information.

SSC_ERRSTAT_SAVE Used by the IDMS_STATUS routine to save a
nonzero ERROR_STATUS in the event of an abend.

Chapter 3. Communications Blocks and Error Detection 3-15

3.2 Communications blocks

Field name Description

SSC_DMLSEQ_SAVE Used by the IDMS_STATUS routine to save the value
of DML_SEQUENCE in the event of an abend.

DML_SEQUENCE Contains the source-level sequence number generated
by the DML precompiler. The DML precompiler
updates this field before each call to the system if you
specify DEBUG in the DECLARE SUBSCHEMA
statement. The runtime system does not use this field.

RECORD_OCCUR Contains a record occurrence sequence identifier used
internally by the system.

SUBSCHEMA_CTRL_END Marks the end of the IDMS-DC communications
block.

3-16 CA-IDMS DML Reference — PL/I

3.3 ERROR_STATUS field and codes

3.3 ERROR_STATUS field and codes

You can use the ERROR_STATUS field of the IDMS-DB or IDMS-DC
communications block to determine whether a DML request was processed
successfully. The DBMS or the DC/UCF system returns a value to the
ERROR_STATUS field, indicating the result of each DML request. For more
information on using the ERROR_STATUS field, see 3.4, “Error detection” on
page 3-28 later in this chapter.

LRF users: Check the LR_STATUS field of the LRC block before checking the
ERROR_STATUS field.

Major and minor codes: The ERROR_STATUS field is a zoned decimal
(CHAR(4)) field consisting of four bytes. The first two bytes represent a major code.
The second two bytes represent a minor code. Each major code identifies a database
or data communications function. Each minor code describes the possible status of
that function.

Values of codes: If a function requested by your program completes successfully,
a value of 0000 is returned. If any other value is returned, this indicates that the
function requested by your program may not have completed successfully. However,
whether this is an error depends on the result you expected. For example, if you code
a FIND CALC command, you should anticipate the return of the value 0326 (which
indicates that a record was not found) after the DBMS processes the request. This
allows you to trap the error and continue processing.

CA-IDMS/DB major codes range from 01 to 20. They occur during database access
in either batch processing or online processing. DC/UCF major codes occur in either
online or DC_BATCH processing. Codes with a major code of 00 apply to all DML
functions. In the tables below, you will find information on database codes and
DC/UCF codes.

3.3.1 Database status codes

Database major codes: The following table lists the database major codes and
their meanings. For complete information on return codes, refer to CA-IDMS
Messages and Codes.

Major code Database function

00 Any DML statement

01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

Chapter 3. Communications Blocks and Error Detection 3-17

3.3 ERROR_STATUS field and codes

Database minor codes: The following table lists the database minor codes and
their meanings. For complete information on return codes, refer to CA-IDMS
Messages and Codes.

Major code Database function

06 KEEP

07 CONNECT

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 Logical Record Facility (LRF) requests

Minor code Status of the database function

00 Combined with a major code of 00, this code indicates successful
completion of the DML operation. Combined with a nonzero major
code, this code indicates that the DML operation was not completed
successfully due to central version causes, such as time-outs and
program checks.

01 An area has not been readied. When this code is combined with a
major code of 16, an IF operation has resulted in a valid false
condition.

02 Either the db-key used with a FIND/OBTAIN DBKEY statement or
the direct db-key suggested for a STORE is not within the page
range for the specified record name.

04 The occurrence count of a variably-occurring element has been
specified as either less than zero or greater than the maximum
number of occurrences defined in the control element.

05 The specified DML function would have violated a
duplicates-not-allowed option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

3-18 CA-IDMS DML Reference — PL/I

3.3 ERROR_STATUS field and codes

Minor code Status of the database function

07 Either the end of a set, area, or index has been reached, or the set is
empty.

08 Either the specified record, set, procedure, or LR verb is not in the
subschema, or the specified record is not a member of the set.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits
execution of the specified DML function. For Logical Record
Facility (LRF) users, the subschema in use allows access to database
records only. Combined with a major code of 00, this code means
that the program attempted to access a database record, but the
subschema in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient
space.

12 There is no db-key for the record to be stored. This is a system
internal error and should be reported to your DBA.

13 A current record of run unit either has not been established or has
been nullified by a previous ERASE statement.

14 The CONNECT statement cannot be executed because the requested
record has been defined as a mandatory automatic member of the
set.

15 The DISCONNECT statement cannot be executed because the
requested record has been defined as a mandatory member of the
set.

16 The record cannot be connected to a set of which it is already a
member.

18 The record was not bound.

20 The current record is not the same type as the specified record
name.

21 Not all areas being used were readied in the correct usage mode.

22 The record name specified is not currently a member of the set name
specified.

23 The area name specified is either not in the subschema or not an
extent area. Alternatively, the record name specified was not
defined within the area name specified.

25 No currency was established for the named set.

26 Either no duplicates exist for the named record, or the record name
cannot be found.

28 The run unit attempted to ready an area that was readied previously.

Chapter 3. Communications Blocks and Error Detection 3-19

3.3 ERROR_STATUS field and codes

Minor code Status of the database function

29 The run unit attempted to place a lock on a record that is already
locked by another run unit. A deadlock results. Unless the run unit
issued either a FIND/OBTAIN KEEP EXCLUSIVE or a KEEP
EXCLUSIVE, the run unit was aborted.

30 An attempt was made to erase the owner record of a nonempty set.

31 The retrieval statement format conflicts with the record's location
mode.

32 An attempt to retrieve a CALC/DUPLICATE record was
unsuccessful. The value of the CALC field in variable storage is not
equal to the value of the CALC control element in the current record
of run unit.

33 At least one set in which the record participates was not included in
the subschema.

40 The WHERE clause in an OBTAIN NEXT logical-record request is
inconsistent with a previous OBTAIN FIRST or OBTAIN NEXT
command for the same record. Previously specified criteria, such as
a reference to a key field, were changed. A path status of
LR_ERROR was returned to the LRC block.

41 The subschema contains no path that matches the WHERE clause in
a logical-record request. A path status of LR_ERROR was returned
to the LRC block.

42 An ON clause included in the path by the DBA specified return of
the LR_ERROR path status to the LRC block. An error occurred
while processing the Logical Record Facility (LRF) request.

43 A program check was recognized during evaluation of a WHERE
clause. The program check indicates that a WHERE clause
specified comparison of a packed decimal field to an unpacked
nonnumeric data field. Alternatively, data in variable storage or a
database record does not conform to its description. A path status of
LR_ERROR was returned to the LRC block, unless the DBA
included an ON clause to override this action in the path.

44 The WHERE clause in a logical-record request does not supply a
key element (sort key, CALC key, or db-key) expected by the path.
A path status of LR_ERROR is returned to the LRC block.

45 During evaluation of a WHERE clause, a program check was
recognized because a subscript value is neither greater than 0 nor
less than its maximum allowed value plus 1. A path status of
LR_ERROR was returned to the LRC block, unless the DBA
included an ON clause to override this action in the path.

3-20 CA-IDMS DML Reference — PL/I

3.3 ERROR_STATUS field and codes

Minor code Status of the database function

46 A program check revealed an arithmetic exception (for example,
overflow, underflow, significance, divide) during evaluation of a
WHERE clause. A path status of LR_ERROR was returned to the
LRC block, unless the DBA included an ON clause to override this
action in the path.

53 The subschema definition of an indexed set does not match the
indexed set's physical structure in the database.

54 Either the prefix length of an SR51 record is less than zero or the
data length is less than or equal to zero.

55 An invalid length was defined for a variable-length record.

56 There is insufficient memory to accommodate the CA-IDMS/DB
compression/decompression routines.

57 A retrieval-only run unit has detected an inconsistency in an index
that should cause an 1143 abend, but optional APAR bit 216 has
been turned on.

60 A record-occurrence type is inconsistent with the set named in the
ERROR_SET field in the IDMS-DB communications block. This
code usually indicates a broken chain.

61 No record can be found for an internal db-key. This code usually
indicates a broken chain.

62 A system-generated db-key points to a record occurrence, but no
record with that db-key can be found. This code usually indicates a
broken chain.

63 The DBMS cannot interpret the DML function to be performed.
When combined with a major code of 00, this code means that
invalid function parameters were passed on the call to the DBMS.
For LRF users, a WHERE clause includes a keyword that is longer
than the 32 characters allowed.

64 The record cannot be found. The CALC-control element was not
defined properly in the subschema.

65 The database page read was not the page requested.

66 The area specified is not available for update.

67 The subschema invoked does not match the subschema object tables.

68 The CICS interface was not started.

69 A BIND RUN_UNIT may not have been issued. The DC/UCF
system may be inactive or may not be accepting new run units. Or
the connection with the DC/UCF system may have been broken due
to timeout or other factors. When combined with a major code of
00, this code means the program was disconnected from the DBMS.

Chapter 3. Communications Blocks and Error Detection 3-21

3.3 ERROR_STATUS field and codes

Minor code Status of the database function

70 The database or journal file will not ready properly. A JCL error is
the probable cause.

71 The page range or page group for the area being readied, or the page
requested cannot be found in the DMCL.

72 There is insufficient memory to load a subschema or database
procedure dynamically.

73 A run unit, executing under the central version, will exceed the
MAXERUS value specified at system generation.

74 The dynamic loading of a module failed. If the module ran under
the central version, the DBMS did not find a subschema or database
procedure module in the data dictionary or the load (core-image)
library. Alternatively, if the DBMS loads the module, it will exceed
the number of subschema and database procedures provided for at
system generation.

75 A read error occurred.

76 A write error occurred.

77 A run unit has not been bound or has been bound twice. When
combined with a major code of 00, this code means either the
program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

78 An area-wait deadlock occurred.

79 The run unit requested more db-key locks than are available to the
system.

80 The target node is either not active or was disabled from the
configuration.

81 The DC/UCF system does not know the database name specified.

82 The subschema is not valid under the specified database.

83 An error occurred in accessing native VSAM data sets.

87 The owner and member records for a set to be updated are not in the
same page group or do not have the same db-key radix.

3.3.2 Data communications status codes

Data communications major codes: The following table lists data
communications major codes and their meanings. For complete information on return
codes, refer to CA-IDMS Messages and Codes.

3-22 CA-IDMS DML Reference — PL/I

3.3 ERROR_STATUS field and codes

Data communications minor codes: The following table lists the data
communications minor codes and their meanings. For complete information on return
codes, refer to CA-IDMS Messages and Codes.

Major code Data communications function

00 Any DML statement

30 TRANSFER CONTROL

31 WAIT/POST

32 GET STORAGE/FREE STORAGE

33 SET ABEND EXIT/ABEND CODE

34 LOAD/DELETE TABLE

35 GET TIME/SET TIMER

36 WRITE LOG

37 ATTACH/CHANGE PRIORITY

38 BIND/ACCEPT/END TRANSACTION STATISTICS

39 ENQUEUE/DEQUEUE

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT

47 LINE MODE TERMINAL MANAGEMENT

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE
JOURNAL

51 KEEP LONGTERM

Minor code Status of the data communications function

00 Combined with a major code of 00, this code indicates either that
the DML function completed successfully or that all tested resources
were enqueued.

01 The requested function cannot be performed immediately. Waiting
will cause a deadlock.

Chapter 3. Communications Blocks and Error Detection 3-23

3.3 ERROR_STATUS field and codes

Minor code Status of the data communications function

02 Either the storage pool has insufficient storage or the storage
required for control blocks is unavailable.

03 The scratch area ID cannot be found.

04 The queue ID (header) cannot be found. Alternatively, a paging
session was in progress when the system received a second
STARTPAGE command. An implied ENDPAGE was processed
before the current STARTPAGE executed successfully.

05 The specified scratch record ID or queue record cannot be found.

06 No resource control element (RCE) exists for the queue record.
Currency was not established.

07 Either an I/O error occurred during processing or the queue upper
limit was reached.

08 The requested resource is not available.

09 The requested resource is available.

10 New storage was assigned.

11 A maximum task condition exists.

12 The named task code is invalid.

13 The named resource cannot be found.

14 A requested module, defined as nonconcurrent, is currently in use.

15 The named module was overlaid and cannot be reloaded
immediately.

16 The specified interval control element (ICE) address cannot be
found.

17 The record was replaced.

18 No printer terminals are defined for the current DC/UCF system.

19 The return area is too small. Data was truncated.

20 An I/O, program-not-found, or potential-deadlock error condition
exists.

21 The message destination is undefined, the longterm id cannot be
found, or a KEEP LONGTERM was issued by a nonterminal task.

22 The specified scratch area already contains a record.

23 No storage or resource control element (RCE) could be allocated for
the reply area.

24 The maximum number of outstanding replies was exceeded.

25 An attention interrupt was received.

3-24 CA-IDMS DML Reference — PL/I

3.3 ERROR_STATUS field and codes

Minor code Status of the data communications function

26 The output data stream contains a logical error.

27 A permanent I/O error occurred.

28 The terminal dial-up line is disconnected.

29 An invalid parameter was passed in the list set up by the DML
precompiler.

30 The named function is not implemented.

31 An invalid parameter was passed. Alternatively, the TRB, LRB, or
MRB contains an invalid field, or the request is invalid because of a
possible logic error in the application program. In a DC_BATCH
environment, the record length specified by the command probably
exceeds the maximum length based on the packet size.

32 The derived length of the specified variable storage is either negative
or zero.

33 Either the named table or the named map cannot be found in the
dictionary load area.

35 A GET STORAGE request is invalid because the area in program
variable storage was previously allocated.

36 The program was not defined during system generation or is marked
out of service.

37 A GET STORAGE operand is invalid because the specified variable
storage area is not based storage.

38 Either no GET STORAGE operand was specified or the specified
variable was not previously allocated.

39 The terminal device requested is out of service.

40 NOIO was specified, but the data stream cannot be found.

41 An IF operation resulted in a valid true condition.

42 The named map does not support the online terminal device in use.

43 The terminal operator canceled a line I/O session.

44 The referenced field does not participate in the specified map. Your
program may contain an invalid subscript.

45 An invalid terminal type is associated with the issuing task.

46 A terminal I/O error occurred.

47 The named area has not been readied.

48 The run unit has not been bound.

49 NOWAIT was specified, but WAIT is required.

Chapter 3. Communications Blocks and Error Detection 3-25

3.3 ERROR_STATUS field and codes

Minor code Status of the data communications function

50 Statistics are not being kept.

51 A lock manager error occurred during processing of the request.

52 The specified table is missing or invalid.

53 A user-written edit routine resulted in an error.

54 Either internal data is invalid or a data conversion error occurred.

55 A user-written edit routine cannot be found.

56 No DFLDS were defined for the map.

57 The ID cannot be found, the ID is not longterm permanent, or
another run unit is using the ID.

58 Either the LRID cannot be found or the maximum number of
concurrent task threads was exceeded.

59 An error occurred in transferring the KEEP LONGTERM request to
IDMSKEEP.

60 The requested KEEP LONGTERM lock id is already in use with a
different page group.

61 The requested KEEP LONMGTERM lock id is already in use with a
different DBKey format.

63 Invalid function parameters were passed on the call to the DBMS.

64 No detail exists for an update, therefore no action was taken.
Alternatively, the requested node for a header or detail is either not
present or not updated.

68 No more updated details exist to map in. Alternatively, the amount
of storage defined for pageable maps at system generation is
insufficient. In the latter case, the DBMS ignores subsequent MAP
OUT DETAIL statements.

69 A DC_BATCH task requires more buffer space than was requested
in the BIND TASK statement.

72 No detail occurrence, footer, or header fields exist to be mapped out
by a MAP OUT RESUME command. Alternatively, the scratch
record that contains the requested detail could not be accessed. The
latter case is a mapping internal error; you should report it to the
DBA.

76 The first screen page was transmitted to the terminal.

77 Either the program is no longer signed on to the subschema or the
variable subschema tables were overwritten.

3-26 CA-IDMS DML Reference — PL/I

3.3 ERROR_STATUS field and codes

Minor code Status of the data communications function

80 The target node is either not active or is disabled from the
configuration. Alternatively, code 80 can signify that a complete
map page was built.

96 There are too many active run units for the internal table.

97 DBIO/DBMS issued an invalid status. Check the system log file for
details.

98 An unsupported PL/I compiler option (for example, DEBUG) may
have been specified.

99 An unexpected internal return code was received. The terminal
device is out of service.

Chapter 3. Communications Blocks and Error Detection 3-27

3.4 Error detection

 3.4 Error detection

You must check the value returned to the ERROR_STATUS field after each DML
request.

Note: If you are using the Logical Record Facility, you should check the
LR_STATUS field of the LRC block before checking the ERROR_STATUS
field.

IDMS_STATUS routine: CA-IDMS/DB, CA-IDMS/DC, and CA-IDMS/UCF
provide the IDMS_STATUS routine to help you find errors. IDMS_STATUS is an
error-checking routine included in the dictionary. You can copy IDMS_STATUS into
your program by coding the INCLUDE IDMS MODULE statement:

INCLUDE IDMS (IDMS_STATUS);

For more information on this statement, see 5.6, “INCLUDE IDMS MODULE” on
page 5-16.

IDMS_STATUS routine used under batch: The following is the code that the
INCLUDE IDMS (IDMS_STATUS) statement copies into batch programs.

 IDMS_STATUS: PROC;

IF ERROR_STATUS='����' THEN GOTO END_STATUS;

PUT SKIP EDIT ('PROGRAM NAME ------', PROGRAM,

'ERROR STATUS ------', ERROR_STATUS,

'ERROR RECORD ------', ERROR_RECORD,

'ERROR SET ---------', ERROR_SET,

'ERROR AREA --------', ERROR_AREA,

'LAST GOOD RECORD --', RECORD_NAME,

'LAST GOOD AREA ----', AREA_NAME,

'DML SEQUENCE ------', DML_SEQUENCE)

 (A(19),X(5),A(8),SKIP,A(19),X(5),A(4),5(SKIP,

 A(19),X(5),A(16)),SKIP,A(19),X(5),F(1�));

 ROLLBACK;

 CALL ABORT;

 END_STATUS: END;

IDMS_STATUS routine used under a DC/UCF system: The following is the
code that the INCLUDE IDMS (IDMS_STATUS) statement copies into DC/UCF
programs:

 IDMS_STATUS: PROC;

IF ERROR_STATUS='����' THEN GOTO END_STATUS;

 SSC_ERRSTAT_SAVE=ERROR_STATUS;

 SSC_DMLSEQ_SAVE=DML_SEQUENCE;

SNAP FROM (SUBSCHEMA_CTRL) TO (SUBSCHEMA_CTRL_END);

ABEND CODE (SSC_ERRSTAT_SAVE);

 END_STATUS: END;

IDMS_STATUS abends your program if the ERROR_STATUS field contains a
nonzero value. Since some values do not indicate processing errors, your program
should check ERROR_STATUS for nonzero values before calling IDMS_STATUS.

3-28 CA-IDMS DML Reference — PL/I

3.4 Error detection

Common status codes: The following table lists the most common codes to
check before calling or executing IDMS_STATUS.

Status codes for pageable maps: The following table lists the status codes
returned when you use pageable maps.

When IDMS_STATUS executes, it exits immediately if the error-status check indicates
that the function completed successfully (error-status of 0000).

Status code Description

0307 End of set, area, or index

0326 No record found

3101 3201
3401 3901

Waiting will cause a deadlock

3202 3204 Insufficient space available

4303 ID cannot be found

4404 Queue header cannot be found

4305 4404 Record cannot be found

3908 Resource not available

3909 Resource is available

3210 New space allocated

3711 Maximum attached tasks

4317 Record has been replaced

4319 4419
4519 4719

Return area too small; data has been truncated

4525 4625 Attention interrupt received

4743 The DC/UCF session was canceled by the operator

Status code Description

4604 Second consecutive STARTPAGE

4664 No current detail

4668 All updated details mapped in or pageable map space exceeded

4672 Nothing to map out

4676 First page transmitted

4680 A complete map page was built

Chapter 3. Communications Blocks and Error Detection 3-29

3.5 The effects of non-zero status on IDMS_STATUS

3.5 The effects of non-zero status on IDMS_STATUS

The following describes the effects of nonzero status conditions on IDMS_STATUS
execution. The effects depend on the application program's operating mode (BATCH
or IDMS_DC).

Effect when the operating mode is BATCH: When the operating mode is
BATCH, a nonzero error status causes IDMS_STATUS to:

■ Print status information on the unsuccessful function

■ Issue a rollback

■ Abend the program

The status information retrieved from the IDMS-DB communications block includes
program name, error status, error record, error set, error area, record name (the last
record successfully accessed), area name (the last area successfully accessed), and the
DML sequence number.

Effect when the operating mode is IDMS_DC: When the operating mode is
IDMS_DC, a nonzero error status causes IDMS_STATUS to:

■ Snap the IDMS-DC communications block (SUBSCHEMA_CTRL)

■ Abend the program

The status information retrieved from the IDMS-DC communications block includes
program name, error status, error record, error set, error area, record name (the last
record successfully accessed), area name (the last area successfully accessed), and the
DML sequence number.

3-30 CA-IDMS DML Reference — PL/I

Chapter 4. Required PL/I Declaratives

4.1 Overview . 4-3
4.2 DECLARE IDMS . 4-4
4.3 DECLARE IDMSPLI . 4-5
4.4 DECLARE IDMSDCP . 4-6
4.5 DECLARE SQLXQ1 . 4-7
4.6 DECLARE ADDR BUILTIN . 4-8
4.7 DECLARE ABORT . 4-9
4.8 DECLARE IDMSP . 4-10

Chapter 4. Required PL/I Declaratives 4-1

4-2 CA-IDMS DML Reference — PL/I

4.1 Overview

 4.1 Overview

This chapter describes the following PL/I declarative statements:

■ DECLARE IDMS (for BATCH mode)

■ DECLARE IDMSPLI (for IDMS_DC mode)

■ DECLARE IDMSDCP (for DC_BATCH mode)

■ DECLARE SQLXQ1 (for embedded SQL DML statements)

■ DECLARE ADDR BUILTIN

 ■ DECLARE ABORT

 ■ DECLARE IDMSP

Note: For non-reentrant PL/I programs compiled under Release 2.3 of PL/I or earlier,
you must specify OPTIONS (MAIN) in the PL/I PROCEDURE statement for
the entry procedure. For reentrant PL/I Release 2.3 or earlier programs, you
must specify OPTIONS (MAIN,REENTRANT). For AD/CYCLE
(LE-COMPLIANT) PL/I programs, you must specify OPTIONS
(REENTRANT,FETCHABLE).

Chapter 4. Required PL/I Declaratives 4-3

4.2 DECLARE IDMS

 4.2 DECLARE IDMS

Include the IDMS ENTRY statement for applications executing in BATCH mode.

��─┬─ DECLARE ─┬─ IDMS ENTRY OPTIONS (INTER, ASSEMBLER); ─────────────────────��

└─ DCL ─────┘

4-4 CA-IDMS DML Reference — PL/I

4.3 DECLARE IDMSPLI

 4.3 DECLARE IDMSPLI

Include the IDMSPLI ENTRY statement for online applications executing in
IDMS_DC mode.

��─┬─ DECLARE ─┬─ IDMSPLI ENTRY OPTIONS (INTER, ASSEMBLER); ──────────────────��

└─ DCL ─────┘

Chapter 4. Required PL/I Declaratives 4-5

4.4 DECLARE IDMSDCP

 4.4 DECLARE IDMSDCP

Include the IDMSDCP ENTRY statement for applications executing in DC_BATCH
mode.

��─┬─ DECLARE ─┬─ IDMSDCP ENTRY OPTIONS (INTER, ASSEMBLER); ──────────────────��

└─ DCL ─────┘

4-6 CA-IDMS DML Reference — PL/I

4.5 DECLARE SQLXQ1

 4.5 DECLARE SQLXQ1

Include the SQLXQ1 ENTRY statement for applications with embedded SQL DML
statements.

��─┬─ DECLARE ─┬─ SQLXQ1 ENTRY OPTIONS (INTER, ASSEMBLER); ───────────────────��

└─ DCL ─────┘

Chapter 4. Required PL/I Declaratives 4-7

4.6 DECLARE ADDR BUILTIN

4.6 DECLARE ADDR BUILTIN

Include the ADDR BUILTIN statement so that all database and online application
programs can use the PL/I ADDR function.

��─┬─ DECLARE ─┬─ ADDR BUILTIN;───��

└─ DCL ─────┘

4-8 CA-IDMS DML Reference — PL/I

4.7 DECLARE ABORT

 4.7 DECLARE ABORT

Include the ABORT ENTRY OPTIONS statement to specify entry options for
ABORT.

��─┬─ DECLARE ─┬─ ABORT ENTRY OPTIONS (INTER, ASSEMBLER); ────────────────────��

└─ DCL ─────┘

Chapter 4. Required PL/I Declaratives 4-9

4.8 DECLARE IDMSP

 4.8 DECLARE IDMSP

Include the IDMSP ENTRY statement if your online application passes parameters
using the TRANSFER statement.

��─┬─ DECLARE ─┬─ IDMSP ENTRY; ───��

└─ DCL ─────┘

4-10 CA-IDMS DML Reference — PL/I

Chapter 5. DML Precompiler-Directive Statements

5.1 Overview . 5-3
5.2 DECLARE SUBSCHEMA . 5-4
5.3 DECLARE MAP . 5-7
5.4 INCLUDE IDMS . 5-8
5.5 INCLUDE IDMS (MAP_BINDS) . 5-15
5.6 INCLUDE IDMS MODULE . 5-16
5.7 INCLUDE IDMS (SUBSCHEMA_BINDS) 5-18
5.8 INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS) 5-19

Chapter 5. DML Precompiler-Directive Statements 5-1

5-2 CA-IDMS DML Reference — PL/I

5.1 Overview

 5.1 Overview

This chapter describes the DML precompiler-directive statements. With the
precompiler-directive statements, you instruct the DML precompiler to copy source
code from the dictionary into your PL/I application program.

If your program accesses the database, it invokes a subschema and issues DML
statements. Therefore, it must include at least a DECLARE SUBSCHEMA statement.
This statement identifies the subschema your program uses and the operating
environment in which it executes. If your program includes a DECLARE
SUBSCHEMA statement, the DML precompiler automatically generates required
source-code components, so you can omit all other precompiler-directive statements.

If your program does not access the database, it does not require DML
precompiler-directive statements.

Note: In this chapter, references to the IDMS communications block apply to both
the IDMS-DB and IDMS-DC communications blocks.

Chapter 5. DML Precompiler-Directive Statements 5-3

5.2 DECLARE SUBSCHEMA

 5.2 DECLARE SUBSCHEMA

Application programs that access the database require the DECLARE SUBSCHEMA
statement. This statement:

■ Identifies a subschema view to the DML precompiler. The subschema that you
name in this statement determines the CA-IDMS/DB record descriptions that the
DML precompiler can copy into your program from the data dictionary.

■ Identifies your program to the DML precompiler.

■ Identifies the operating mode (protocol) and environment under which the program
executes. The operating mode determines the form and content of calling
sequences produced by the DML precompiler.

■ Specifies whether to number each DML command for identification during error
reporting (debug sequencing).

 Syntax

��─── DECLARE ──�

 �─┬──�─

└─ (subschema-name SUBSCHEMA, schema-name SCHEMA ──────────────────────────

─�──�─

 ─┬───────────────────────────┬──

└─ VERSION version-number ──┘

─�───┬──────────�

─┬───┬──) ──┘

└─ , program-name PROGRAM ─┬──────────────────────────┬─┘

└─ VERSION version-number ─┘

 �─┬─────────────────────────────┬──�

└─ MODE (─┬─ BATCH ← ──┬─) ─┘

├─ IDMS_DC ──┤

├─ DC_BATCH ─┤

└─ mode ─────┘

 �─┬─────────┬──�

└─ DEBUG ─┘

 �─┬───┬─ ; ────────────────────────────��

└─ SUBSCHEMA_NAMES LENGTH (─┬─ 16 ─┬─) ─┘

└─ 18 ─┘

 Parameters

subschema-name SUBSCHEMA,schema-name SCHEMA
Specifies the subschema and schema view of the database used by your program.
The subschema and schema definitions must already exist in the data dictionary.
If your DBA preregisters program names valid for the subschema in the data
dictionary, the program name that you specify in the program-name parameter
(described below) must be associated with this subschema in the dictionary.

5-4 CA-IDMS DML Reference — PL/I

5.2 DECLARE SUBSCHEMA

VERSION version-number
Optionally qualifies schema-name with a version number. Version-number must
be an integer in the range 1 through 9999. The default is the highest version
number defined in the data dictionary for schema-name.

program-name PROGRAM
Optionally specifies the name of your program. If you preregistered this program
in the data dictionary, make sure that program-name matches the name in the data
dictionary. Otherwise, the DML precompiler will not recognize the program.

VERSION version-number
Optionally qualifies program-name with a version number (for example, for
purposes of testing or development). version-number must be an integer in the
range 1 through 9999. Version-number defaults to the highest number defined in
the data dictionary for the program, or defaults to 1 if the program is not
registered in the dictionary.

MODE
Identifies the operating mode used by the DML precompiler to generate call
statements for the program's DML statements.

BATCH
Specifies that your program executes in batch mode. The DBMS copies the
IDMS-DB communications block into program variable storage and generates
standard CALL sequences. BATCH is the default.

IDMS_DC
Specifies that your program executes in IDMS_DC mode. The DBMS copies
the IDMS-DC communications block into program variable storage and
generates CA-IDMS/DC CALL sequences for CA-IDMS/DC requests.

DC_BATCH
Specifies that your program executes in DC-BATCH mode. The DBMS
copies the IDMS-DC communications block into program variable storage and
generates DC_BATCH CALL sequences for CA-IDMS/DC requests.

DC_BATCH allows you to use all of the database DML commands, and also
the following CA-IDMS/DC DML commands:

 BIND
 COMMIT TASK
 DELETE QUEUE
 FINISH
 GET QUEUE
 PUT QUEUE
 ROLLBACK
 WRITE PRINTER

You specify MODE DC_BATCH to access CA-IDMS/DC queues and printers
from batch applications running under the DC/UCF system.

mode
Indicates that your program executes in a special environment, determined by
the database administrator. Special environments include user-defined

Chapter 5. DML Precompiler-Directive Statements 5-5

5.2 DECLARE SUBSCHEMA

operating modes and teleprocessing monitors. The DML precompiler copies
the appropriate communications block into program variable storage and
generates operating-mode-specific CALL sequences.

Acceptable values for mode are:

 CICS
 CICS_EXEC
 INTERCOMM
 PL1F
 PL1OPT
 SHADOW
 TASKMASTER

DEBUG
Instructs the DML precompiler to place a unique DML sequence number in the
IDMS communications block for each DML statement. These numbers appear in
columns 82 through 89 of the PL/I compiler output listing, in the form
DMLPnnnn. The DML precompiler generates numbers to identify the sequence in
which DML statements appear in the program. Depending on the error routine
defined by the DBA, you can use the DML sequence number to help debug your
program.

If you do not specify DEBUG, the DML precompiler does not associate sequence
numbers with source statements.

16/18
Specifies either 16 bytes or 18 bytes for the following fields in the IDMS
communications block: RECORD_NAME, AREA_NAME, ERROR_SET,
ERROR_RECORD, and ERROR_AREA.

Example: The following example illustrates how to use the DECLARE
SUBSCHEMA statement. In this example, DECLARE SUBSCHEMA accesses the
EMPSS09 subschema of the EMPSCH schema for a program named PLITST. The
program runs under the IDMS_DC operating mode and includes DEBUG sequencing.

DECLARE (EMPSS�9 SUBSCHEMA,EMPSCHM SCHEMA,PLITST PROGRAM)

 MODE (IDMS_DC)

 DEBUG;

5-6 CA-IDMS DML Reference — PL/I

5.3 DECLARE MAP

 5.3 DECLARE MAP

The DECLARE MAP statement:

■ Indicates to the DML precompiler that your program uses mapping-mode terminal
I/O

■ Defines the program's maps

Repeat the DECLARE MAP statement as many times as required to define each map
used by your program. Code DECLARE MAP statements for all of your maps before
the first INCLUDE IDMS statement.

 Syntax

��─── DECLARE (map-name MAP ─┬──────────────────────────┬─) ─────────────────�

└─ VERSION version-number ─┘

 �─┬──┬─ ; ─────────────────────────��

└─ TYPE (─┬─ STANDARD ← ─┬─) ─┬──────────┬─┘

└─ EXTENDED ───┘ └─ PAGING ─┘

 Parameters

map-name MAP
Specifies the name of a map used by the program. Map-name must be the 1- to
8-character name of a map defined in the dictionary.

VERSION version-number
Optionally qualifies the named map with a version number. Version-number must
be an integer in the range 1 through 9999 that is associated with the named map
in the data dictionary.

TYPE
Specifies whether the map request block (MRB) built for the map will be standard
or extended.

STANDARD
Specifies that the map has standard 3270 terminal attributes. STANDARD is
the default.

EXTENDED
Specifies that the map has extended 3279 terminal attributes. You can use
such mapping features as color, blinking fields, and reverse video for your
application programs running under 3279-type terminals.

PAGING
Specifies that the named map is a pageable map. For more information on
pageable maps, see 6.49, “MAP IN (DC/UCF)” on page 6-124 , and 6.50, “MAP
OUT (DC/UCF)” on page 6-129, or refer to the CA-IDMS Mapping Facility.

Example: The following example illustrates how to use the DECLARE MAP
statement to access the EMPMAPLR map:

DECLARE (EMPMAPLR MAP);

Chapter 5. DML Precompiler-Directive Statements 5-7

5.4 INCLUDE IDMS

 5.4 INCLUDE IDMS

You can code INCLUDE IDMS statements in your application program to copy source
code into the program. The data dictionary contains one or more items of source code
that correspond to each INCLUDE IDMS statement parameter. Accordingly, your
choice of parameters determines the items of code copied from the data dictionary into
your program. The syntax rules for INCLUDE IDMS (shown below) describe the
INCLUDE IDMS statement parameters with their associated items of source code.

The source code that you copy into your program depends on the usage mode defined
in the program's subschema. The subschema usage modes are DML, LR, and MIXED.
These usage modes determine your program's source code requirements; thus, they
determine whether the program can access database records only, logical records only,
or both database records and logical records. Do not code INCLUDE IDMS
statements to copy items that conflict with your program's subschema usage mode.
For example, do not code SUBSCHEMA_LR_CTRL if your program's subschema
usage mode is DML.

Subschema usage modes: The following table describes subschema usage modes
and the source code each requires.

Subschema
usage mode

Description and required source code

DML Allows a program to access database records only. DML requires
the following source code items:

■ The IDMS communications block through which the application
program and the DBMS communicate. For more details, see
Chapter 3, “Communications Blocks and Error Detection” on
page 3-1.

■ The descriptions of the records to which the subschema permits
access.

LR Allows a program to access logical records only. LR requires the
following source code items:

■ The IDMS communications block through which LRF and the
DBMS communicate. For more details, see Chapter 3,
“Communications Blocks and Error Detection” on page 3-1.

■ The logical-record request control (LRC) block through which
the application program and LRF communicate. For more
details, see Chapter 3, “Communications Blocks and Error
Detection” on page 3-1.

■ The descriptions of the logical records contained in the
subschema.

5-8 CA-IDMS DML Reference — PL/I

5.4 INCLUDE IDMS

Subschema
usage mode

Description and required source code

MIXED Allows a program to access both database records and logical
records. MIXED requires the following source code items:

■ The IDMS communications block, through which LRF and the
DBMS communicate. For more details, see Chapter 3,
“Communications Blocks and Error Detection” on page 3-1.

■ The description of all records to which the subschema permits
access.

■ The logical-record request control (LRC) block, through which
the application program and the Logical Record Facility
communicate. For more details, see Chapter 3,
“Communications Blocks and Error Detection” on page 3-1.

■ The descriptions of all logical records contained in the
subschema.

Usage of MIXED mode is not recommended for the following
reasons:

■ Issuing both logical-record and database requests requires that
your program take into account the database currencies
maintained in the paths used to service logical-record requests.

■ Accessing both logical records and database records in the same
program can diminish the program's independence from the
database structure. This could interfere with the execution of
paths invoked to provide requested logical-record access.

■ Logical-record path processing can interfere with program
access to database records. You may need to insert a DML
statement after a logical-record request to reestablish the
appropriate currency.

Chapter 5. DML Precompiler-Directive Statements 5-9

5.4 INCLUDE IDMS

 Syntax

��─┬────────────────┬─ INCLUDE IDMS ──�

└─ level-number ─┘

 ┌───┐

 �─┬─ (─↓─ SUBSCHEMA_DML_LR_DESCRIPTION ─┬──┬─────────────┬────────┬┴─) ─┬ ; ─��

│ ├─ SUBSCHEMA_DESCRIPTION ───────┤ └─ attribute ─┘ │ │

│ ├─ SUBSCHEMA_CTRL ──────────────┤ │ │

│ ├─ SUBSCHEMA_RECORDS ───────────┘ │ │

 │ │ │ │

│ ├─ record-name ──┬──────────────────┬─┬─────────────┬─────┤ │

│ │ └─ version-number ─┘ └─ attribute ─┘ │ │

 │ │ │ │

│ ├─ SUBSCHEMA_LR_DESCRIPTION ────┬─────┬─────────────┬─────┤ │

│ ├─ SUBSCHEMA_LR_CONTROL ────────┤ └─ attribute ─┘ │ │

│ ├─ SUBSCHEMA_LR_RECORDS ────────┘ │ │

 │ │ │ │

│ ├─ LR (logical-record-name) ──┬─────────────┬─────────────┤ │

│ │ └─ attribute ─┘ │ │

 │ │ │ │

│ ├─ MAPS ────────────────────────┬─────┬─────────────┬─────┘ │

│ ├─ MAP map-name ────────────────┤ └─ attribute ─┘ │

│ ├─ MAP_CONTROLS ────────────────┤ │

│ ├─ MAP_CONTROL map-name ────────┤ │

│ └─ MAP_RECORDS ─────────────────┘ │

 │ │

└── (SUBSCHEMA_LR_CTRL) ─┬───────────────────────┬──┬─────────────┬───┘

└─ SIZE lrc-block-size ─┘ └─ attribute ─┘

 Parameters

level-number INCLUDE IDMS
Instructs the DML precompiler to copy source code into your program at the
INCLUDE IDMS statement's location.

The optional level-number clause instructs the DML precompiler to copy
descriptions into your program at a different level than the level specified in the
data dictionary. Level-number must be an integer in the range 01 through 99. If
your program specifies level-number, the DML precompiler copies the first level
of code to the level specified by level-number and adjusts all other levels
accordingly. If your program does not specify level-number, the descriptions
copied by the DML precompiler have the same level numbers as originally
specified in the dictionary.

Using the level-number clause can cause unpredictable results if record fields are
defined with a SYNCHRONIZED clause. Such fields may contain slack bytes,
inserted to ensure correct alignment. Because CA-IDMS/DB and CA-IDMS/DC
don't regard slack bytes as functional, fields that contain such bytes may be
misrepresented. Therefore, you should ensure that all fields and records are
structured properly.

SUBSCHEMA_DML_LR_DESCRIPTION
Copies all components required to access both database and logical records:

 SUBSCHEMA_CTRL

 SUBSCHEMA_RECORDS

5-10 CA-IDMS DML Reference — PL/I

5.4 INCLUDE IDMS

 SUBSCHEMA_LR_CTRL

 SUBSCHEMA_LR_RECORDS

You specify SUBSCHEMA_DML_LR_DESCRIPTION only if the subschema
usage mode is MIXED. Do not specify
SUBSCHEMA_DML_LR_DESCRIPTION if the usage mode is DML or LR.

SUBSCHEMA_DESCRIPTION
Copies all components required to access database records:

 SUBSCHEMA_CTRL

 SUBSCHEMA_RECORDS

Do not specify SUBSCHEMA_DESCRIPTION if the subschema usage mode is
LR.

SUBSCHEMA_CTRL
Copies the IDMS-DB communications block data description. If the operating
mode is IDMS_DC or DC_BATCH, SUBSCHEMA_CTRL copies the IDMS-DC
communications block.

SUBSCHEMA_RECORDS
Copies the descriptions of all records contained in the subschema. The DML
precompiler may copy into your program PL/I synonyms defined for the
subschema records in the data dictionary, according to the rules of synonym
usage. Do not specify SUBSCHEMA_RECORDS if the subschema usage mode is
LR.

Note: When copying a schema-owned record, the DML precompiler adds up to 7
bytes, if necessary, to make the record length divisible by 8 for
doubleword alignment.

record-name VERSION version-number attribute
Copies the description of a record defined in the dictionary. Do not specify record
if the subschema's usage mode is LR.

record-name
Specifies the name of the record to be copied. It can be the primary name of
a record stored in the data dictionary, or a synonym.

Schema-owned records cannot be copied into non CA-IDMS programs.
These are programs that neither use a subschema nor access the database.
However, a synonym defined for a schema-owned record can be copied into a
non CA-IDMS program. You use the VERSION clause to identify the
synonym.

If the DMLP processor cannot find a record named record-name in the
dictionary, it searches for a module by that name. The module, which may
have been stored using the DDDL compiler, presumably contains a definition
of records not included in the subschema. If an operating mode is associated
with the named record or module in the data dictionary, it must agree with the
mode in effect for your program. (See "DECLARE SUBSCHEMA", earlier
in this chapter.) For more information on associating operating modes with
records, refer to the IDD DDDL Reference.

Chapter 5. DML Precompiler-Directive Statements 5-11

5.4 INCLUDE IDMS

VERSION version-number
Optionally qualifies IDD records, but not schema-owned records, with a
version number. Version-number must be an integer in the range 1 through
9999. Version-number defaults to the highest version number of the record
defined in the data dictionary for the language and operating mode under
which the program compiles.

attribute
Optionally allows you to instruct the DML precompiler to include PL/I
attributes in the PL/I DECLARE statement. The DML precompiler generates
the PL/I DECLARE statement for the record that you specify in record-name.

SUBSCHEMA_LR_DESCRIPTION
Copies all components required to access logical records:

 SUBSCHEMA_CTRL

 SUBSCHEMA_LR_CTRL

 SUBSCHEMA_LR_RECORDS

Do not specify SUBSCHEMA_LR_DESCRIPTION if the subschema's usage
mode is DML.

SUBSCHEMA_LR_CONTROL
Copies the SUBSCHEMA_CTRL and SUBSCHEMA_LR_CTRL components. Do
not specify SUBSCHEMA_LR_CONTROL if the subschema usage mode is DML.

SUBSCHEMA_LR_RECORDS
Copies the descriptions of all logical records defined in the subschema. All
participating database records become 02-level group fields. This allows your
program to reference the portion of a logical record corresponding to a database
record as a group field. Do not specify SUBSCHEMA_LR_RECORDS if the
subschema usage mode is DML.

Note: When copying a schema-owned record, the DML precompiler adds up to 7
bytes, if necessary, to make the record length divisible by 8 for
doubleword alignment.

LR (logical-record-name)
Copies the description of an individual logical record contained in the subschema:
do not include LR if the subschema usage mode is DML.

logical-record-name
Names the logical record.

attribute
Optionally allows you to instruct the DML precompiler to include PL/I
attributes in the PL/I DECLARE statement. The DML precompiler generates
the PL/I DECLARE statement for the logical record that you specify in
logical-record-name.

MAPS
Copies the map request block (MRB) and map records for the maps that you
specify with DECLARE MAP statements.

5-12 CA-IDMS DML Reference — PL/I

5.4 INCLUDE IDMS

MAP
Copies the MRB and map records associated with the named map. The map's
version number defaults to the version number that you specify for this map in the
DECLARE MAP statement.

map-name
Names the map.

attribute
Attribute optionally allows you to instruct the DML precompiler to include
PL/I attributes in the PL/I DECLARE statement. The DML precompiler
generates the PL/I DECLARE statement for the map that you specify in
map-name.

MAP_CONTROLS
Copies the MRBs for the maps that you specify in DECLARE MAP statements.

MAP_CONTROL
Copies the MRB for the named map. The map's version number defaults to the
version number that you specify for this map in the DECLARE MAP statement.

map-name
Names a map.

attribute
Optionally allows you to instruct the DML precompiler to include PL/I
attributes in the PL/I DECLARE statement. The DML precompiler generates
the PL/I DECLARE statement for the map that you specify in map-name.

MAP_RECORDS
Copies the map records for the maps that you specify in DECLARE MAP
statements.

SUBSCHEMA_LR_CTRL
Copies the LRC block data description.

Do not specify SUBSCHEMA_LR_CTRL if the subschema usage mode is DML.

SIZE (lrc-block-size)
Optionally specifies the size of that portion of the LRC block that contains
information about the logical-record-request WHERE clause (PXE).

Lrc-block-size defaults to 512 bytes. If you include lrc-block-size, you should
specify a size large enough to accommodate the most complex WHERE clause in
the program. The default, 512, is large enough to include approximately 32
operators, operands, and literals.

Lrc-block-size must be a positive integer in the range 0 through 9999. You
specify a value of 0 if none of the logical-record requests issued by the program
includes a WHERE clause. You calculate lrc-block-size as follows:

1. Multiply the greatest number of operands and operators in a single WHERE
clause by 16 bytes.

Chapter 5. DML Precompiler-Directive Statements 5-13

5.4 INCLUDE IDMS

2. Add the number of bytes, rounded up to the nearest multiple of 8, associated
with the data field for each operand that is a keyword, a program variable, or
a logical-record field named in the OF LR clause.

3. Add the length, rounded up to the nearest multiple of 8, of each operand that
is a character literal.

4. Add 12 bytes for each operand that is a numeric literal.

INCLUDE IDMS code: The following figure shows the code that the DML
precompiler copies into program variable storage for each INCLUDE IDMS statement
parameter.

5-14 CA-IDMS DML Reference — PL/I

5.5 INCLUDE IDMS (MAP_BINDS)

5.5 INCLUDE IDMS (MAP_BINDS)

INCLUDE IDMS (MAP_BINDS) copies map- and map-record-specific BIND MAP
statements for all maps that you specify with DECLARE MAP statements.

 Syntax

��─┬─────────────────────────────┬──��

└─ INCLUDE IDMS (MAP_BINDS); ─┘

 Parameters

INCLUDE IDMS (MAP_BINDS)
Copies map- and map-record-specific BIND MAP statements for all maps that you
specify with DECLARE MAP statements.

If your program uses a map, it requires a BIND MAP statement for the map and
for each associated map record. The BIND MAP statement identifies the location
of the MRB and initializes fields within the MRB. If you code the INCLUDE
IDMS (MAP_BINDS) statement in your program, the DML processor
automatically copies appropriate BIND MAP statements into your program. For
more information on the BIND MAP statement, see 6.14, “BIND MAP
(DC/UCF)” on page 6-30.

You must individually bind map records associated with logical records.

Chapter 5. DML Precompiler-Directive Statements 5-15

5.6 INCLUDE IDMS MODULE

5.6 INCLUDE IDMS MODULE

INCLUDE IDMS (module-name) copies procedure source statements defined by the
database administrator as modules in the dictionary.

 Syntax

 ┌───┐

��─↓─┬───┬─┴──────��

└─ INCLUDE IDMS (module-name ─┬──────────────────────────┬─); ─┘

└─ VERSION version-number ─┘

 Parameters

INCLUDE IDMS (module-name)
Copies procedure source statements defined by the DBA as modules in the
dictionary. Module-name specifies the name of a module previously defined by
the DBA using the DDDL compiler (refer to the IDD DDDL Reference). The
available PL/I standard modules are:

 ■ IDMS_STATUS

■ IDMS_STATUS (mode is IDMS_DC)

The DML precompiler inserts the module into your program at the location of the
INCLUDE IDMS MODULE statement, without modification. If the module
contains DML statements, the DML precompiler examines and expands them
within the context of your program's subschema view and compile mode, as if
they were coded directly.

Note: The INCLUDE IDMS MODULE statement can precede the DECLARE
SUBSCHEMA statement if the module it copies does not contain DML
statements.

You can nest INCLUDE IDMS MODULE statements. This means that code
invoked by an INCLUDE IDMS MODULE entry can itself contain INCLUDE
IDMS MODULE statements. However, make sure that a copied module does not
copy itself.

VERSION version-number
Optionally qualifies module-name with a version number. Version-number must
be an integer in the range 1 through 9999.

There are two defaults for version-number, depending on whether:

■ There is a version of the module that you name with module-name which is
operating-mode-specific. In this case, the default is the version number of
this module. If there are two or more mode-specific versions of the module,
version-number defaults to the highest version number among these versions.

■ There is a version of the module that you name with module-name which is
non-operating-mode-specific, and there exists no operating-mode-specific
version. In this case, the default is the version number of this module. If
there are two or more non-mode-specific versions of the module,
version-number defaults to the highest version number among these versions.

5-16 CA-IDMS DML Reference — PL/I

5.6 INCLUDE IDMS MODULE

If no version of the module exists in the dictionary, an error condition results. For
more information, refer to CA-IDMS Messages and Codes.

Chapter 5. DML Precompiler-Directive Statements 5-17

5.7 INCLUDE IDMS (SUBSCHEMA_BINDS)

5.7 INCLUDE IDMS (SUBSCHEMA_BINDS)

INCLUDE IDMS (SUBSCHEMA_BINDS):

■ Initializes the PROGRAM_NAME field in the IDMS-DB communications block

■ Copies a standard BIND RUN_UNIT statement and appropriate standard BIND
RECORD commands for each CA-IDMS/DB record in your program's variable
storage.

This statement does not generate BIND RECORD statements for logical records. Your
program does not need them. INCLUDE IDMS (SUBSCHEMA_BINDS) only
generates BINDS for subschema records explicitly copied into your program by
INCLUDE IDMS statements.

Do not use the INCLUDE IDMS (SUBSCHEMA_BINDS) statement when binding
several records to the same location. Instead, code BIND RUN_UNIT and BIND
RECORD statements separately for each record. This allows you to include a CALL
IDMS_STATUS statement after each BIND RECORD statement to check the
ERROR_STATUS field.

Note: The INCLUDE IDMS (SUBSCHEMA_BINDS) statement does not
automatically generate BIND RECORD statements when more than one copy
of a given database record description (including synonyms) is present in the
program. For such records, issue individual BIND RECORD statements to
bind the records to the correct location.

 Syntax

��─┬───────────────────────────────────┬──────────────────────────────────────��

└─ INCLUDE IDMS (SUBSCHEMA_BINDS); ─┘

5-18 CA-IDMS DML Reference — PL/I

5.8 INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)

5.8 INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)

INCLUDE IDMS SUBSCHEMA_RECORD_BINDS copies appropriate standard BIND
record-name statements for each CA-IDMS/DB record in the program.

In cases where more than one copy of a given database record description (including
synonyms) is present in the program, INCLUDE IDMS
SUBSCHEMA_RECORD_BINDS will not automatically generate bind record
statements. Individual bind record statements must be issued to bind the record to the
correct location.

Do not use the INCLUDE IDMS SUBSCHEMA_RECORD_BINDS statement when
binding several records to the same location. Instead, code DML BIND statements for
each record.

 Syntax

��─┬──┬───────────────────────────────��

└─ INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS); ─┘

Chapter 5. DML Precompiler-Directive Statements 5-19

5-20 CA-IDMS DML Reference — PL/I

Chapter 6. Data Manipulation Language Statements

6.1 Overview . 6-3
6.2 Functions of DML statements . 6-4
6.3 DML statements grouped by function . 6-6

6.3.1 DML statements (database) . 6-6
6.3.2 DML statements (data communications) 6-8

6.4 ABEND (DC/UCF) . 6-13
6.5 ACCEPT (DC/UCF) . 6-14
6.6 ACCEPT BIND RECORD . 6-16
6.7 ACCEPT DBKEY FROM CURRENCY 6-17
6.8 ACCEPT DBKEY RELATIVE TO CURRENCY 6-19
6.9 ACCEPT IDMS STATISTICS . 6-21
6.10 ACCEPT PAGE_INFO . 6-23
6.11 ACCEPT PROCEDURE CONTROL LOCATION 6-24
6.12 ACCEPT TRANSACTION STATISTICS (DC/UCF) 6-25
6.13 ATTACH (DC/UCF) . 6-28
6.14 BIND MAP (DC/UCF) . 6-30
6.15 BIND PROCEDURE . 6-32
6.16 BIND RECORD . 6-34
6.17 BIND RUN_UNIT . 6-36
6.18 BIND TASK (DC/UCF) . 6-39
6.19 BIND TRANSACTION STATISTICS (DC/UCF) 6-40
6.20 CHANGE PRIORITY (DC/UCF) . 6-41
6.21 CHECK TERMINAL (DC/UCF) . 6-42
6.22 COMMIT . 6-43
6.23 CONNECT . 6-44
6.24 DC RETURN (DC/UCF) . 6-47
6.25 DELETE QUEUE (DC/UCF) . 6-50
6.26 DELETE SCRATCH (DC/UCF) . 6-51
6.27 DELETE TABLE (DC/UCF) . 6-53
6.28 DEQUEUE (DC/UCF) . 6-54
6.29 DISCONNECT . 6-55
6.30 END LINE TERMINAL SESSION (DC/UCF) 6-58
6.31 END TRANSACTION STATISTICS (DC/UCF) 6-59
6.32 ENDPAGE (DC/UCF) . 6-60
6.33 ENQUEUE (DC/UCF) . 6-61
6.34 ERASE . 6-64
6.35 ERASE (LRF) . 6-70
6.36 FIND/OBTAIN . 6-72

6.36.1 FIND/OBTAIN CALC/DUPLICATE 6-72
6.36.2 FIND/OBTAIN CURRENT . 6-74
6.36.3 FIND/OBTAIN DBKEY . 6-77
6.36.4 FIND/OBTAIN OWNER . 6-79
6.36.5 FIND/OBTAIN WITHIN SET USING SORT KEY 6-81
6.36.6 FIND/OBTAIN WITHIN SET/AREA 6-83

6.37 FINISH . 6-89
6.38 FREE STORAGE (DC/UCF) . 6-91
6.39 GET . 6-92

Chapter 6. Data Manipulation Language Statements 6-1

6.40 GET QUEUE (DC/UCF) . 6-94
6.41 GET SCRATCH (DC/UCF) . 6-97
6.42 GET STORAGE (DC/UCF) . 6-100
6.43 GET TIME (DC/UCF) . 6-104
6.44 IF . 6-106
6.45 INQUIRE MAP (DC/UCF) . 6-108

6.45.1 Moving map-related data . 6-108
6.45.2 Testing for global map input conditions 6-110
6.45.3 Testing for cursor position . 6-111
6.45.4 Testing for input error conditions 6-112

6.46 KEEP . 6-116
6.47 KEEP LONGTERM (DC/UCF) . 6-117
6.48 LOAD TABLE (DC/UCF) . 6-122
6.49 MAP IN (DC/UCF) . 6-124
6.50 MAP OUT (DC/UCF) . 6-129
6.51 MAP OUTIN (DC/UCF) . 6-135
6.52 MODIFY MAP (DC/UCF) . 6-138
6.53 MODIFY RECORD . 6-146
6.54 MODIFY RECORD (LRF) . 6-149
6.55 OBTAIN (LRF) . 6-151
6.56 POST (DC/UCF) . 6-154
6.57 PUT QUEUE (DC/UCF) . 6-155
6.58 PUT SCRATCH (DC/UCF) . 6-157
6.59 READ LINE FROM TERMINAL (DC/UCF) 6-159
6.60 READ TERMINAL (DC/UCF) . 6-161
6.61 READY . 6-164
6.62 RETURN (DC/UCF) . 6-167
6.63 ROLLBACK . 6-170
6.64 SEND MESSAGE (DC/UCF) . 6-172
6.65 SET TIMER (DC/UCF) . 6-175
6.66 SNAP (DC/UCF) . 6-179
6.67 STARTPAGE (DC/UCF) . 6-181
6.68 STORE RECORD . 6-184
6.69 STORE RECORD (LRF) . 6-188
6.70 TRANSFER (DC/UCF) . 6-190
6.71 WAIT (DC/UCF) . 6-193
6.72 WRITE JOURNAL (DC/UCF) . 6-195
6.73 WRITE LINE TO TERMINAL (DC/UCF) 6-197
6.74 WRITE LOG (DC/UCF) . 6-200
6.75 WRITE PRINTER (DC/UCF) . 6-205
6.76 WRITE TERMINAL (DC/UCF) . 6-209
6.77 WRITE THEN READ TERMINAL (DC/UCF) 6-211
6.78 Logical-record clauses (WHERE and ON) 6-215

6.78.1 WHERE . 6-215
6.78.2 ON clause . 6-219

6-2 CA-IDMS DML Reference — PL/I

6.1 Overview

 6.1 Overview

This chapter describes the Data Manipulation Language (DML) that applies to
CA-IDMS/DB, CA-IDMS/DC, and CA-IDMS/UCF.

Note: The DC/UCF references in this chapter include both the CA-IDMS/DC and
CA-IDMS/UCF products.

DML consists of statements that enable you to access the database management system
(DBMS) and to request Logical Record Facility (LRF) and data communications
services.

This chapter presents the following information:

■ Tables describing the database and data communications functions of DML
statements

■ Tables grouping the DML statements by function

■ Discussions of each DML statement (statements are in alphabetical order).
Discussions include an overall description of the statement, syntax, parameter
descriptions, and examples

Important: When you review the syntax for each DML statement, note that you
must code the parameters in the order in which they are shown.

Chapter 6. Data Manipulation Language Statements 6-3

6.2 Functions of DML statements

6.2 Functions of DML statements

This section describes the 14 categories of DML statements. There are 6 categories of
database (CA-IDMS/DB) functions. There are 8 categories of data communications
(DC/UCF system) functions.

Database functions: The following is a list of the 6 database DML functions:

 ■ Control statements:

– Initiate and terminate processing

 – Effect recovery

– Prevent concurrent retrieval and update of database records

– Evaluate set conditions

■ Retrieval statements locate records in the database and make them available to the
application program.

■ Modification statements add new records to the database and modify and delete
existing records.

■ Accept statements move special information such as database keys, storage
addresses, and statistics from the DBMS to program variable storage.

■ Logical-record statements retrieve, modify, store, and erase logical records.

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure. These functions:

– Establish checkpoints in the journal file for database, scratch, and queue
records used by the issuing task

– Roll back user database, scratch, and queue areas to the last checkpoint
established

– Establish an end-of-task checkpoint and relinquish control of all database,
scratch, and queue areas associated with the issuing task

– Write user-defined records to the journal file

Data communications functions: The following is a list of the 8 data
communications DML functions:

■ Program management statements:

– Pass and return control from one program to another

– Load and delete programs and tables

– Define exit routines to be performed before an abnormal program termination
(abend)

– Force an abend condition

■ Storage management statements allocate and release variable storage.

6-4 CA-IDMS DML Reference — PL/I

6.2 Functions of DML statements

■ Task management statements:

– Initiate a new task

– Change the dispatching priority of the issuing task

– Enqueue and dequeue system resources

– Signal that a task is to wait pending completion of an event

– Post an event control block (ECB), indicating completion of an event

■ Time management statements obtain the time and date and define time-related
events. These events include:

– Placing the issuing task in a wait state for a specified amount of time

– Posting a user-specified ECB after a specified interval

– Initiating a new task after a specified interval

■ Scratch management statements create, delete, or retrieve records from the
scratch area.

■ Queue management statements create, delete, or retrieve records from the queue
area.

■ Terminal management statements transfer data between the application program
and the terminal.

■ Utility function statements:

– Request retrieval of task-related information

– Request a memory dump of selected parts of storage

– Retrieve and send a predefined message stored in the data dictionary

– Send a specified message to one or more users or logical terminals

– Collect, retrieve, and write DC/UCF system statistics on a transaction basis

– Establish longterm database locks and monitor access to database records used
across tasks during a pseudo-conversational transaction

Chapter 6. Data Manipulation Language Statements 6-5

6.3 DML statements grouped by function

6.3 DML statements grouped by function

The two tables in this section list and describe the DML statements by their database
and data communications functions, respectively.

6.3.1 DML statements (database)

The following table lists CA-IDMS/DB DML statements by function.

Note: You can use CA-IDMS/DB statements in a DC/UCF system environment.
However, you cannot use DC/UCF system statements in the CA-IDMS/DB
environment.

Function DML Statement Description

Control BIND RUN-UNIT Signs on the application
program to the DBMS

BIND RECORD Establishes addressability in
variable storage for one or
more records included in the
program's subschema

BIND PROCEDURE Establishes communication
between the application
program and a DBA-defined
database procedure

READY Prepares database areas for
processing

FINISH Releases database areas from
program control

IF Evaluates the presence of
member records in a set or a
record's membership status
and specifies action based on
the outcome

COMMIT Writes a checkpoint to the
journal file and releases
record locks

ROLLBACK Requests recovery of
database, scratch, and queue
areas

KEEP Places locks on record
occurrences

6-6 CA-IDMS DML Reference — PL/I

6.3 DML statements grouped by function

Function DML Statement Description

Retrieval FIND/OBTAIN DBKEY Accesses a record using a
db-key previously saved by
the program

FIND/OBTAIN CURRENT Accesses a record using
previously established
currencies

FIND/OBTAIN WITHIN
SET/AREA

Accesses a record based on
its logical location within a
set or its physical location
within an area

FIND/OBTAIN OWNER Accesses the owner record of
a set occurrence

FIND/OBTAIN
CALC/DUPLICATE

Accesses a record using its
CALC-key value

FIND/OBTAIN USING SORT
KEY

Accesses a record in a sorted
set using its sort-key value

GET Moves all data associated
with a previously located
record into program variable
storage

RETURN Retrieves the database and
symbolic keys of an indexed
record entry

Modification STORE Adds a new record to the
database

MODIFY Changes the contents of an
existing record

CONNECT Links a record to a set

DISCONNECT Removes a member record
from a set

ERASE Deletes a record from the
database

Accept ACCEPT DBKEY FROM
CURRENCY

Saves the db-key of the
current record of run unit,
record type, set, or area

ACCEPT DBKEY RELATIVE
TO CURRENCY

Saves the db-key of the next,
prior, or owner record
relative to the current record
of a set

Chapter 6. Data Manipulation Language Statements 6-7

6.3 DML statements grouped by function

Function DML Statement Description

ACCEPT IDMS STATISTICS Returns system runtime
statistics to the program

ACCEPT BIND RECORD Returns a record's bind
address to the program

ACCEPT PAGE_INFO Returns page information for
a given record to the program

ACCEPT PROCEDURE Returns information from the
application program
information block associated
with a database procedure to
the program

Logical Record
Facility

ERASE Deletes a logical record

MODIFY Modifies a logical record

OBTAIN Accesses a logical record

STORE Stores a logical record

Recovery COMMIT Establishes a checkpoint in
the journal file for database,
scratch, and queue record
activity

FINISH Relinquishes control of
database, scratch, and queue
areas

ROLLBACK Rolls back database, scratch,
and queue areas to the last
checkpoint

WRITE JOURNAL Writes user-defined records
to the journal file

6.3.2 DML statements (data communications)

The following table lists DC/UCF DML statements by function.

Note: You cannot use DC/UCF system statements in the CA-IDMS/DB environment.

Function DML Statement Description

Program
Management

TRANSFER (LINK) Passes control to another
program with the expectation
of receiving it back

6-8 CA-IDMS DML Reference — PL/I

6.3 DML statements grouped by function

Function DML Statement Description

TRANSFER (XCTL) Passes control to another
program with no expectation
of receiving it back

DC RETURN Returns control to the next
higher level calling program

LOAD TABLE Loads a program or table into
the DC/UCF program pool

DELETE TABLE Signals that a program has
finished using a program or a
table in the program pool

ABEND Abnormally terminates the
issuing task

Storage
Management

GET STORAGE Allocates variable storage
from an DC/UCF storage
pool

FREE STORAGE Frees all or part of a block of
variable storage

Task
Management

ATTACH Attaches a new task within
DC/UCF

CHANGE PRIORITY Changes the dispatching
priority of the issuing task

ENQUEUE Acquires a resource or a list
of resources

DEQUEUE Releases a resource

WAIT Relinquishes control to
DC/UCF while awaiting
completion of an event

POST Posts an event control block
(ECB)

Time
Management

GET TIME Obtains the time and date
from the system

SET TIMER Defines a time-delayed event

Scratch
Management

PUT SCRATCH Stores a scratch record

GET SCRATCH Retrieves a scratch record

DELETE SCRATCH Deletes a scratch record

Chapter 6. Data Manipulation Language Statements 6-9

6.3 DML statements grouped by function

Function DML Statement Description

Queue
Management

PUT QUEUE Stores a queue record

GET QUEUE Retrieves a queue record

DELETE QUEUE Deletes a queue record

Terminal
Management
(Basic Mode)

READ TERMINAL Requests a synchronous or
asynchronous data transfer
from the terminal to program
variable storage

WRITE TERMINAL Requests a synchronous or
asynchronous data transfer
from program variable
storage to the terminal buffer

WRITE THEN READ
TERMINAL

Requests a synchronous or
asynchronous data transfer
from program variable
storage to the terminal buffer;
and on a terminal operator
signal, back to variable
storage

CHECK TERMINAL Ensures that a previously
issued asynchronous I/O
operation is complete

Terminal
Management
(Line Mode)

READ LINE FROM
TERMINAL

Requests a synchronous data
transfer from the terminal to
the issuing program

WRITE LINE TO TERMINAL Requests a synchronous or
asynchronous data transfer
from the issuing program to
the terminal

END LINE TERMINAL
SESSION

Terminates the current line
I/O session

WRITE PRINTER Requests transmission of data
from a task to a printer

Terminal
Management
(Mapping
 Mode)

MAP IN Requests a transfer of data
from the terminal to program
variable storage

MAP OUT Requests a transfer of data
from program variable
storage to the terminal

6-10 CA-IDMS DML Reference — PL/I

6.3 DML statements grouped by function

Function DML Statement Description

MAP OUTIN Requests a transfer of data
from program variable
storage to the terminal; and,
upon a terminal operator
signal, back to variable
storage

INQUIRE MAP Obtains information or tests
conditions concerning the
previous mapping operation

MODIFY MAP Requests modifications of
mapping options for a map

STARTPAGE Begins a map paging session
and specifies options for that
session

ENDPAGE Terminates a map paging
session

Utility BIND MAP Identifies the location of a
map request block (MRB)
and initializes the MRB's
fields

ACCEPT Retrieves task-related
information

SNAP Requests a memory dump of
selected parts of storage

SEND MESSAGE Sends a message to a user,
logical terminal, or list of
users or logical terminals

BIND TRANSACTION
STATISTICS

Defines the beginning of a
transaction for the purpose of
collecting transaction
statistics

ACCEPT TRANSACTION
STATISTICS

Returns the contents of the
transaction statistics block
(TSB) to program variable
storage

END TRANSACTION
STATISTICS

Defines the end of a
transaction

Chapter 6. Data Manipulation Language Statements 6-11

6.3 DML statements grouped by function

Function DML Statement Description

KEEP LONGTERM Either modifies a prior KEEP
LONGTERM request or
enables database longterm
locks or database monitoring
for records, sets, or areas

WRITE LOG Retrieves a message from the
data dictionary and sends it
to a predefined destination

6-12 CA-IDMS DML Reference — PL/I

6.4 ABEND (DC/UCF)

 6.4 ABEND (DC/UCF)

The ABEND statement terminates the issuing task abnormally. Optionally, ABEND
also writes a task dump to the log file. Upon completion of the ABEND function, the
DBMS returns processing control to the DC/UCF system program-control module.

 Syntax

��─── ABEND CODE (abend-code) ─┬────────────┬─ ; ─────────────────────────────��

├─ NODUMP ← ─┤

└─ DUMP ─────┘

 Parameters

ABEND CODE(abend-code)
Specifies a 4-character abend code that you select. Abend-code can be the
symbolic name of a variable storage field containing the abend code, or the code
itself enclosed in single quotation marks.

Note: Because the abend code that you specify appears in the system log and
displays at the task's terminal, you should not use system abend codes.

NODUMP/DUMP
Specifies whether the system writes a formatted task dump to the log file. The
default is NODUMP.

Example: In this example, ABEND terminates the issuing task abnormally, issuing
the code U876, and writes a task dump to the log file:

 ABEND CODE('U876')

 DUMP;

Status codes: Because the DBMS passes control to the system program-control
module, your program does not have to check the ERROR_STATUS field.

Chapter 6. Data Manipulation Language Statements 6-13

6.5 ACCEPT (DC/UCF)

 6.5 ACCEPT (DC/UCF)

The ACCEPT statement retrieves the following task-related information:

■ Current task code

 ■ Task identifier

■ Logical terminal identifier

■ Physical terminal identifier

■ DC/UCF system version

■ User identifier (the ID of the user signed on to the task's logical terminal)

■ Physical terminal screen dimensions

 Syntax

��──── ACCEPT ──┬─ TASK CODE───┬─ INTO (return-location); ────────────────────��

├─ TASK ID ────┤

├─ LTERM ID ───┤

├─ PTERM ID ───┤

├─ SYSVERSION ─┤

├─ USER ID ────┤

└─ SCREENSIZE ─┘

 Parameters.

TASK CODE
Specifies the 1- to 8-character code that invokes the current task.

TASK ID
Specifies the task identifier assigned by the system. The task identifier is a unique
sequence number stored in a FIXED BINARY(31) field. At system startup, the
DC/UCF system sets the ID to 0. Each time a task executes, the system
increments the ID by 1.

LTERM ID
Specifies the 1- to 8-character identifier of the logical terminal associated with the
current task. If the current task has no associated logical terminal, the system
returns spaces (null value).

PTERM ID
Specifies the 1- to 8-character identifier of the physical terminal associated with
the current task. If the current task has no associated physical terminal, the
system returns spaces (null value).

SYSVERSION
Specifies the version number of the current DC/UCF system. The version number
is an integer in the range 0 through 9999 stored in a halfword binary numeric
field.

6-14 CA-IDMS DML Reference — PL/I

6.5 ACCEPT (DC/UCF)

USER ID
Specifies the 32-character identifier of the user signed on to the logical terminal
associated with the current task. If no user is signed on, the system returns spaces
(null value).

SCREENSIZE
Specifies the screen dimensions of the current task's associated physical terminal.
The system returns the screen size to a field divided into two FIXED
BINARY(15) fields. The first field contains the row; the second field contains the
column. For example, values of 24 in the first halfword and 80 in the second
halfword represent a 24-line by 80-character screen. If the current task has no
associated terminal, the system returns a null value of 0.

INTO (return-location)
Specifies the location to which the DC/UCF system returns the requested
task-related information. Return-location specifies the symbolic name of a
user-defined field. The pictures and usages of this field and of the requested data
must be compatible.

Example: The following ACCEPT statements illustrate retrieving the ID of the
current task and the id of the user signed on to the task's associated logical terminal:

ACCEPT TASK ID INTO (TASK_ID);

ACCEPT USER ID INTO (USER_ID);

Status codes: Upon completion of the ACCEPT function, the ERROR_STATUS
field in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

4829 An invalid parameter was passed from the program.

Chapter 6. Data Manipulation Language Statements 6-15

6.6 ACCEPT BIND RECORD

6.6 ACCEPT BIND RECORD

The ACCEPT BIND RECORD statement moves the bind address of a record to a
specified location in program variable storage. Usually, a subprogram uses this
statement to acquire the address of a record.

Currency: The ACCEPT BIND RECORD statement updates no currencies.
However, your program must establish currency for the record type whose bind
address it requires.

 Syntax:

��─── ACCEPT BIND RECORD (record-name) INTO (bind-address); ──────────────────��

record-name
Specifies the record whose bind address will be copied into the specified location
in variable storage. Record-name must be a record previously bound by the run
unit.

INTO (bind-address)
Specifies the variable-storage location to which CA-IDMS/DB and the system
return the record's bind address. Bind-address is defined as a FIXED
BINARY(31) field. After the ACCEPT BIND RECORD statement executes,
bind-address contains a storage address, not a database key.

Example: This example uses ACCEPT BIND RECORD to move the bind address
for the EMPLOYEE record to location REG1 in the requesting subprogram:

ACCEPT BIND RECORD (EMPLOYEE) INTO (REG1);

Status codes: Upon completion of the ACCEPT BIND RECORD function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request was serviced successfully.

1508 The subschema does not contain the named record.

6-16 CA-IDMS DML Reference — PL/I

6.7 ACCEPT DBKEY FROM CURRENCY

6.7 ACCEPT DBKEY FROM CURRENCY

The ACCEPT DBKEY FROM CURRENCY statement moves the db-key of the
current record of run unit, record type, set, or area to a specified location in program
variable storage. By using a FIND/OBTAIN DBKEY statement, you can directly
access records whose db-keys you save using the ACCEPT DBKEY FROM
CURRENCY statement.

Currency: ACCEPT DBKEY FROM CURRENCY does not update currencies.

 Syntax

��─── ACCEPT CURRENCY ─┬────────────────────────┬─ INTO (db-key-field); ──────��

├─ RECORD (record-name) ─┤

├─ SET (set name) ───────┤

└─ AREA (area-name) ─────┘

 Parameters

RECORD (record-name)
Saves the db-key of the record current of the specified record type into the
location specified by db-key-field.

SET (set-name)
Saves the db-key of the record current of the specified set into the location
specified by db-key-field.

AREA (area-name)
Saves the db-key of the record current of the specified area into the location
specified by db-key-field.

INTO (db-key-field)
Identifies the location in variable storage that will contain the db-key of the
specified record. Db-key-field must be a FIXED BINARY(31) field.

Note: If you omit the RECORD, SET, or AREA qualifiers, the DBMS saves the
db-key of the record current of run unit.

Example: The following example:

1. Establishes a record, named EMPLOYEE, as current of run unit

2. Saves the record's db-key in a location named SAVED_DBKEY, using the
ACCEPT DBKEY FROM CURRENCY statement

3. Accesses the EMPLOYEE record occurrence using the saved db-key

EMP_ID_�415 = EMP_ID_IN;

FIND CALC RECORD (EMPLOYEE);

ACCEPT CURRENCY INTO (SAVED_DBKEY);

 .

 .

 .

OBTAIN DBKEY (SAVED_DBKEY);

Chapter 6. Data Manipulation Language Statements 6-17

6.7 ACCEPT DBKEY FROM CURRENCY

Status codes: Upon completion of the ACCEPT DBKEY FROM CURRENCY
function, the ERROR_STATUS field in the IDMS-DB communications block indicates
the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

1506 Currency was not established for the named record or set.

1508 The subschema does not contain the named record or set. Your
program probably invoked the wrong subschema.

1523 The subschema does not contain the named area.

6-18 CA-IDMS DML Reference — PL/I

6.8 ACCEPT DBKEY RELATIVE TO CURRENCY

6.8 ACCEPT DBKEY RELATIVE TO CURRENCY

The ACCEPT DBKEY RELATIVE TO CURRENCY statement moves a selected
db-key to a specified location in program variable storage. The db-key moved to
variable storage can be the db-key of the next, prior, or owner record relative to the
current record of set.

This version of the ACCEPT statement allows you to save the db-key of a record
within a set without actually having to access the record. By using a FIND/OBTAIN
DBKEY statement, you can directly access records whose db-keys you save using the
ACCEPT DBKEY RELATIVE TO CURRENCY statement.

Note: You must establish set currency before using this statement. If no set currency
is established, the DBMS returns 0000 to the ERROR_STATUS field and -1 to
the db-key field.

Currency: ACCEPT DBKEY RELATIVE TO CURRENCY does not update any
currencies.

 Syntax

��─── ACCEPT CURRENCY SET (set name) ─┬─ NEXT ──┬─ INTO (db-key-field); ──────��

├─ PRIOR ─┤

└─ OWNER ─┘

 Parameters

SET (set-name)
Identifies the record whose db-key will be moved into the location specified by
db-key, described below. Set-name must be a set included in the subschema.

When a record declared as an optional or manual member of a set is accessed, it
does not become current of set unless it is connected to an occurrence of the set.
If the record is not connected to an occurrence of the set, an attempt to access the
owner record will locate instead the owner of the current record of set. In such
cases, use the OWNER option to determine whether the retrieved record is
actually a set member before executing the ACCEPT DBKEY RELATIVE TO
CURRENCY statement. You can do this with the IF statement, described later in
this chapter.

NEXT
Saves the db-key of the next record relative to the record current of the
specified set. You cannot request NEXT currency unless the specified set has
prior pointers. Prior pointers ensure that the next pointer in the prefix of the
current record does not point to a logically deleted record.

No indication of an end-of-set condition is possible for the NEXT or PRIOR
options. A retrieval command must be issued to determine whether the next
or prior record in the set occurrence is the owner record.

Native VSAM users: You cannot request NEXT currency for sets defined
for native VSAM records.

Chapter 6. Data Manipulation Language Statements 6-19

6.8 ACCEPT DBKEY RELATIVE TO CURRENCY

PRIOR
Saves the db-key of the prior record relative to the record current of the
specified set. You cannot request PRIOR currency unless the specified set
has prior pointers.

No indication of an end-of-set condition is possible for the NEXT or PRIOR
options. A retrieval command must be issued to determine whether the next
or prior record in the set occurrence is the owner record.

Native VSAM users: You cannot request PRIOR currency for sets defined
for native VSAM records.

OWNER
Saves the db-key of the owner of the record current of the specified set. A
request for OWNER CURRENCY cannot be executed unless the specified set
has owner pointers. However, if the current record of the named set is the
owner record occurrence, a request for OWNER currency returns the db-key
of the record itself. This will happen even if the set does not have owner
pointers.

Native VSAM users: You cannot request OWNER currency for sets defined
for native VSAM records.

INTO (db-key-field)
Identifies the location in variable storage that will contain the db-key of the
requested record. Db-key must be a FIXED BINARY(31) field.

Example: The following statements access the EMP_EXPERTISE set and save the
db-key of the owner record of the SKILL_EXPERTISE set:

EMP_ID_�415 = '�119';

FIND CALC RECORD (EMPLOYEE);

FIND FIRST SET (EMP_EXPERTISE);

ACCEPT CURRENCY SET (SKILL_EXPERTISE) OWNER

 INTO (SAVE_DBKEY);

Status codes: Upon completion of the ACCEPT DBKEY RELATIVE TO
CURRENCY function, the ERROR_STATUS field in the IDMS-DB communications
block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

1508 The subschema does not contain the named set. Your program
probably invoked the wrong subschema.

6-20 CA-IDMS DML Reference — PL/I

6.9 ACCEPT IDMS STATISTICS

6.9 ACCEPT IDMS STATISTICS

The ACCEPT IDMS STATISTICS statement copies system runtime statistics located
in the program's statistics block to program variable storage. While a run unit
executes, your program can issue ACCEPT IDMS STATISTICS as many times as
required. For example, you might want to request database statistics after storing a
variable-length record. This allows you to determine whether the entire record was
stored in one place, or fragments were placed in an overflow area.

The ACCEPT IDMS STATISTICS statement does not reset any of the statistics fields
to zero. IDMS statistics block fields are reset only when you issue a FINISH
command.

You can use the ACCEPT IDMS STATISTICS statement in both the navigational and
Logical Record Facility (LRF) environments.

 Syntax

��─── ACCEPT IDMS_STATISTICS INTO (db-statistics-field);──────────────────────��

 Parameter

db-statistics-field
Identifies the field (in program variable storage) the system runtime statistics
contained in IDMS_STATISTICS are to be copied to. Db-statistics-field is
defined as an aligned, 100-byte field.

The DBMS copies IDMS_STATISTICS data to db-statistics-field according to the
following format:

 DECLARE

 �1 DB_STATISTICS,

 �3 DATE_TODAY CHAR(8),

 �3 TIME_TODAY CHAR(8),

 �3 PAGES_READ FIXED BINARY(31),

 �3 PAGES_WRITTEN FIXED BINARY(31),

 �3 PAGES_REQUESTED FIXED BINARY(31),

 �3 CALC_TARGET FIXED BINARY(31),

 �3 CALC_OVERFLOW FIXED BINARY(31),

 �3 VIA_TARGET FIXED BINARY(31),

 �3 VIA_OVERFLOW FIXED BINARY(31),

 �3 LINES_REQUESTED FIXED BINARY(31),

 �3 RECS_CURRENT FIXED BINARY(31),

 �3 CALLS_TO_IDMS FIXED BINARY(31),

 �3 FRAGMENTS_STORED FIXED BINARY(31),

 �3 RECS_RELOCATED FIXED BINARY(31),

 ��3 LOCKS_REQUESTED FIXED BINARY(31),

 ��3 SEL_LOCKS_HELD FIXED BINARY(31),

 ��3 UPD_LOCKS_HELD FIXED BINARY(31),

 ��3 RUN_UNIT_ID FIXED BINARY(31),

 ��3 TASK_ID FIXED BINARY(31),

 ��3 LOCAL_ID CHAR(8),

 �3 FILLER CHAR(8);

�Applies to CA-IDMS/DB central version only

Chapter 6. Data Manipulation Language Statements 6-21

6.9 ACCEPT IDMS STATISTICS

The LOCAL_ID field consists of the 4-byte identifier of the interface in which the run
unit originated (for example, BATC, DBDC, or CICS) and a unique identifier
(fullword binary value) assigned to the run unit by that interface. For batch and
VM/ESA run units, this identifier specifies the internal machine time. For CICS run
units, this identifier specifies the CICS transaction number assigned to the run unit.

To display the originating interface identifier and the run-unit identifier for a program,
you can move the LOCAL-ID field to a work field:

 �1 WORK_LOCAL_ID,

 �2 WORK_LOCAL_ORIGIN CHAR(4),

 �2 WORK_LOCAL_NUMBER FIXED BINARY(31);

Alternatively, your DBA can modify the DB_STATISTICS record from the data
dictionary to define two subordinate fields for the LOCAL_ID field. The
DB_STATISTICS record describes the IDMS statistics block. To use this record, code
the following statement in program variable storage:

�1 INCLUDE IDMS (DB_STATISTICS);

Example: The following statements:

1. Establish currency for the sets in which a new EXPERTISE record will participate
as a member

2. Store the EXPERTISE record

3. Move statistics about the stored EXPERTISE record to the DB_STATISTICS
location in main storage

EMP_ID_�415 = EMP_ID_IN;

FIND CALC RECORD (EMPLOYEE);

SKILL_ID_IN = SKILL_ID_�455;

FIND CALC RECORD (SKILL);

STORE RECORD (EXPERTISE);

ACCEPT IDMS_STATISTICS INTO (DB_STATISTICS);

Status codes: Upon completion of the ACCEPT IDMS STATISTICS function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request was serviced successfully.

1518 The database statistics location was not a valid address.

6-22 CA-IDMS DML Reference — PL/I

6.10 ACCEPT PAGE_INFO

 6.10 ACCEPT PAGE_INFO

The ACCEPT PAGE_INFO statement moves the page information for a given record
to a specified location in program variable storage. Page information that is saved in
this manner is available for subsequent direct access by using a FIND/OBTAIN
DBKEY statement.

 Syntax

��─ ACCEPT PAGE_INFO RECORD (record-name) INTO (page-info-location) ─────────��

 Parameters

RECORD (record-name)
Specifies the record whose page information will be placed in the specified
location.

INTO (page-info-location)
Specifies the name of the four-byte field that may be defined either as a group
field or as a fullword field (PIC S9(8) COMP). Identifies the location in variable
storage that contains page information for the specified record type. Upon
successful completion of this statement, the first two bytes of the field contain the
page group number and the last two bytes contain a db-key radix that may be used
for interpreting dbkeys.

Example: The following example retrieves the page information for the
DEPARTMENT record.

�1 W_PG_INFO.

�3 W_GRP_NUM FIXED BINARY 15,

�3 W_DBK_FORMAT FIXED BINARY 15,

ACCEPT PAGE_INFO RECORD (DEPARTMENT) INTO (W_PG_INFO)

Status Codes: After completion of the ACCEPT PAGE_INFO statement, the
ERROR-STATUS field in the CA-IDMS communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

1508 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

Chapter 6. Data Manipulation Language Statements 6-23

6.11 ACCEPT PROCEDURE CONTROL LOCATION

6.11 ACCEPT PROCEDURE CONTROL LOCATION

The ACCEPT PROCEDURE CONTROL LOCATION statement copies the application
program information block to a specified location in program variable storage. This
256-byte block is associated with a previously defined database procedure. The
program information block acquires its information through the BIND PROCEDURE
statement, described later in this chapter. The database procedure may have updated
the information.

Only programs running under the central version, but in a different region/partition,
should use the ACCEPT PROCEDURE CONTROL LOCATION statement.

For more information on the application program information block, refer to CA-IDMS
Database Administration.

 Syntax

��─── ACCEPT PROCEDURE (procedure-name) INTO (procedure-control-location); ───��

 Parameters

procedure-name
Specifies the name of the database procedure whose application program
information block will be copied into variable storage. procedure-name must refer
to an 8-character field in variable storage.

INTO (procedure-control-location)
Specifies the fullword-aligned 256-byte location in variable storage to which the
DBMS copies the application program information block.

Example: The following statement copies the application program information block
used by the procedure identified in the CHECK_ALL field in main storage to the
location identified as CHECK_IT in main storage:

ACCEPT PROCEDURE (CHECK_ALL) INTO (CHECK_IT);

Status codes: Upon completion of the ACCEPT PROCEDURE CONTROL
LOCATION function, the ERROR_STATUS field in the IDMS-DB communications
block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

1508 The subschema does not contain the named procedure.

1518 The procedure control location was not a valid address.

6-24 CA-IDMS DML Reference — PL/I

6.12 ACCEPT TRANSACTION STATISTICS (DC/UCF)

6.12 ACCEPT TRANSACTION STATISTICS (DC/UCF)

The ACCEPT TRANSACTION STATISTICS statement copies the contents of the
transaction statistics block (TSB) to a specified location in program variable storage.
Optionally, the statement can also write the TSB to the DC/UCF log file.

 Syntax

��─── ACCEPT TRANSACTION STATISTICS ─┬───────────┬────────────────────────────�

├─ WRITE ← ─┤

└─ NOWRITE ─┘

 �─┬───────────────────────────────────┬─ ; ──────────────────────────────────��

└─INTO (return-stat-data-location) ─┘

 Parameters

WRITE/NOWRITE
Specifies whether the TSB will be written to the system log file. The default is
WRITE.

INTO (return-stat-data-location)
Specifies the location to which the system copies the TSB.
Return-stat-data-location is a fullword-aligned 388-byte field. The data copied
from the TSB to return-stat-data-location is formatted as follows:

 �1 RETURN_STAT_DATA_LOC_V

�3 SYS_RES�� FIXED BIN (31) RESERVED

�3 SYS_RES�1 FIXED BIN (31) RESERVED

�3 PROG_CALL FIXED BIN (31) # OF PROGRAMS CALLED

�3 PROG_LOAD FIXED BIN (31) # OF PROGRAMS LOADED

�3 TERM_READ FIXED BIN (31) # OF TERMINAL READS

�3 TERM_WRITE FIXED BIN (31) # OF TERMINAL WRITES

�3 TERM_ERROR FIXED BIN (31) # OF TERMINAL ERRORS

�3 STORAGE_GET FIXED BIN (31) # OF STORAGE GETS

�3 SCRATCH_GET FIXED BIN (31) # OF SCRATCH GETS

�3 SCRATCH_PUT FIXED BIN (31) # OF SCRATCH PUTS

�3 SCRATCH_DEL FIXED BIN (31) # OF SCRATCH DELETES

�3 QUEUE_GET FIXED BIN (31) # OF QUEUE GETS

�3 QUEUE_PUT FIXED BIN (31) # OF QUEUE PUTS

�3 QUEUE_DEL FIXED BIN (31) # OF QUEUE DELETES

�3 GET_TIME FIXED BIN (31) # OF GET TIMES

�3 SET_TIME FIXED BIN (31) # OF SET TIMES

�3 DB_CALLS FIXED BIN (31) # OF DATABASE CALLS

�3 MAX_STACK FIXED BIN (31) MAX WORDS USED IN STACK

�3 USER_TIME FIXED BIN (31) USER MODE TIME (1���-4 SEC)

�3 SYS_TIME FIXED BIN (31) SYS MODE TIME (1���-4 SEC)

�3 WAIT_TIME FIXED BIN (31) WAIT TIME (1���-4 SEC)

�3 RCE_USED FIXED BIN (31) # OF RCE'S USED

�3 RLE_USED FIXED BIN (31) # OF RLE'S USED

�3 DPE_USED FIXED BIN (31) # OF DPE'S USED

�3 STG_HI_MARK FIXED BIN (31) STORAGE HIGH WATER MARK

�3 FREESTG_REQ FIXED BIN (31) # FREE STORAGE REQUESTS

�3 SYS_SERV FIXED BIN (31) # SYSTEM SERVICE CALLS

�3 SYS_RES1� FIXED BIN (31) RESERVED

�3 SYS_RES11 FIXED BIN (31) RESERVED

�3 PAGES_READ FIXED BIN (31) # OF PAGES READ

�3 PAGES_WRIT FIXED BIN (31) # OF PAGES WRITTEN

Chapter 6. Data Manipulation Language Statements 6-25

6.12 ACCEPT TRANSACTION STATISTICS (DC/UCF)

�3 PAGES_REQ FIXED BIN (31) # OF PAGES REQUESTED

�3 CALC_NO FIXED BIN (31) # OF CALC RECS NO OFLOW

�3 CALC_OF FIXED BIN (31) # OF CALC RECS OFLOW

�3 VIA_NO FIXED BIN (31) # OF VIA RECS NO OFLOW

�3 VIA_OF FIXED BIN (31) # OF VIA RECS OFLOW

�3 RECS_REQ FIXED BIN (31) # OF RECS REQUESTED

�3 RECS_CURR FIXED BIN (31) # OF RECS CURR OF RU

�3 DBMS_CALLS FIXED BIN (31) # OF DBMS CALLS

�3 FRAG_STORED FIXED BIN (31) # OF FRAGMENTS STORED

�3 RECS_RELO FIXED BIN (31) # OF RECS RELOCATED

�3 TOT_LOCKS FIXED BIN (31) TOTAL # OF LOCKS

�3 SHR_LOCKS FIXED BIN (31) # OF SHARE LOCKS

�3 NSH_LOCKS FIXED BIN (31) # OF NON-SHARE LOCKS

�3 FREE_LOCKS FIXED BIN (31) # OF LOCKS FREE'D

�3 SR8_SPLITS FIXED BIN (31) # OF SR8 SPLITS

�3 SR8_SPAWNS FIXED BIN (31) # OF SR8 SPAWNS

�3 SR8_STORED FIXED BIN (31) # OF SR8S STORED

�3 SR8_ERASED FIXED BIN (31) # OF SR8S ERASED

�3 SR7_STORED FIXED BIN (31) # OF SR7S STORED

�3 SR7_ERASED FIXED BIN (31) # OF SR7S ERASED

�3 BTREE_SRCH FIXED BIN (31) # OF BTREE SEARCHES

�3 BTREE_LEVL FIXED BIN (31) # OF BTREE LEVELS SEARCHED

�3 ORPHAN_ADOPT FIXED BIN (31) # OF ORPHANS ADOPTED

�3 LVL_SRCH_BEST FIXED BIN (15) # LEVEL SEARCHES (BEST CASE)

�3 LVL_SRCH_WORST FIXED BIN (15) # LEVEL SEARCHES (WORST CASE)

�3 RECS_UPD FIXED BIN (31) # OF RECS UPDATED

�3 PAGE_INCACHE FIXED BIN (31) # OF PAGES FOUND IN CACHE

�3 PAGE_INPRFET FIXED BIN (31) # OF PAGES FOUND IN PREFETCH

�3 SYS_RES12 FIXED BIN (31) RESERVED

�3 SYS_RES13 FIXED BIN (31) RESERVED

�3 SYS_RES2� FIXED BIN (31) RESERVED

�3 SYS_RES21 FIXED BIN (31) RESERVED

�3 USER_ID CHAR (32) DC USER ID

�3 LTERM_ID CHAR (8) LOGICAL TERMINAL ID

 �3 USER_SUPP_ID CHAR (8) USER-SUPPLIED ID

�3 BIND_DATE DEC FIXED (7) DATE BIND COMMAND ISSUED

�3 BIND_TIME FIXED BIN (31) TIME BIND COMMAND ISSUED

�3 TRANSTAT_FLGS FIXED BIN (31) FOUR 1-BYTE FLAGS

�3 SYS_RES3� FIXED BIN (31) RESERVED

�3 SYS_RES31 FIXED BIN (31) RESERVED

�3 SQL_COMMAND FIXED BIN (31) # OF SQL COMMANDS EXECUTED

�3 SQL_FETCH FIXED BIN (31) # OF SQL ROWS FETCHED

�3 SQL_INSERT FIXED BIN (31) # OF SQL ROWS INSERTED

�3 SQL_UPDATE FIXED BIN (31) # OF SQL ROWS UPDATED

�3 SQL_DELETE FIXED BIN (31) # OF SQL ROWS DELETED

�3 SQL_SORTS FIXED BIN (31) # OF SQL SORTS PERFORMED

�3 SQL_ROW_SORT FIXED BIN (31) # OF SQL ROWS SORTED

�3 SQL_MIN_RSORT FIXED BIN (31) MINIMUM ROWS SORTED

�3 SQL_MAX_RSORT FIXED BIN (31) MAXIMUM ROWS SORTED

�3 SQL_AM_RECOMP FIXED BIN (31) # OF AM RECOMPILES

�3 SYS_RES32 FIXED BIN (31) RESERVED

�3 SYS_RES33 FIXED BIN (31) RESERVED

�3 SYS_RES34 FIXED BIN (31) RESERVED

�3 SYS_RES35 FIXED BIN (31) RESERVED

�3 SYS_RES36 FIXED BIN (31) RESERVED

�3 SYS_RES37 FIXED BIN (31) RESERVED

�3 SYS_RES38 FIXED BIN (31) RESERVED

�3 SYS_RES39 FIXED BIN (31) RESERVED

6-26 CA-IDMS DML Reference — PL/I

6.12 ACCEPT TRANSACTION STATISTICS (DC/UCF)

Example: The following statement returns the contents of the TSB to
STATISTICS_BLOCK and writes transaction statistics to the log file:

ACCEPT TRANSACTION STATISTICS

 WRITE

 INTO (STATISTICS_BLOCK);

Status codes: Upon completion of the ACCEPT TRANSACTION STATISTICS
function, the ERROR_STATUS field in the IDMS-DC communications block indicates
the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

3801 The transaction statistics block has no storage available. Waiting
would cause a deadlock.

3813 No transaction statistics block exists. No BIND TRANSACTION
STATISTICS request was issued.

3831 Either the parameter list is invalid or no logical terminal element
(LTE) is associated with the issuing task.

3850 The collection of transaction statistics or task statistics was not
enabled during system generation.

Chapter 6. Data Manipulation Language Statements 6-27

6.13 ATTACH (DC/UCF)

 6.13 ATTACH (DC/UCF)

The ATTACH statement instructs the system to initiate a new task by acquiring the
necessary control blocks and storage and by adding the task to its dispatching list.
The system initializes the attached task and queues it for execution. The issuing
program receives control according to normal dispatching priority.

 Syntax

��─── ATTACH TASK CODE (task-code) ─┬───────────────────────┬─┬──────────┬ ; ─��

└─ PRIORITY (priority) ─┘ ├─ WAIT ← ─┤

└─ NOWAIT ─┘

 Parameters

TASK CODE (task-code)
Specifies the 1- to 8-character code of the task to be initiated. Task-code is the
symbolic name of a user-defined field containing the task code or the task code
itself, enclosed in single quotation marks. The referenced task code must have
been defined during system generation or dynamically, by using the DCMT
VARY DYNAMIC TASK command.

�� For more information about DCMT VARY DYNAMIC TASK, see CA-IDMS
System Tasks and Operator Commands.

PRIORITY (priority)
Specifies the dispatching priority of the attached task. Priority can be the
symbolic name of a user-defined fixed binary field containing the dispatching
priority, or a numeric constant. Valid priorities are numeric values ranging from
000 through 240. Priority defaults to the priority established during system
generation for the specified task code, terminal, and user.

WAIT/NOWAIT
Specifies whether the issuing task waits if a maximum task condition prevents the
system from attaching the task immediately:

WAIT
Specifies that the issuing task waits until the maximum task condition no
longer exists and the system can attach the specified task. WAIT is the
default.

NOWAIT
Specifies that the issuing task does not wait for the system to attach the task.
If you specify NOWAIT, your program should check the ERROR_STATUS
field in the IDMS-DC communications block to determine whether the
ATTACH request completed. If ERROR_STATUS contains the value 3711,
indicating that a maximum task condition exists, then the request was not
serviced and your program should perform alternative processing before
reissuing the ATTACH request.

Example: The following code initiates task TASKATCH and assigns the task a
dispatching priority of 199:

6-28 CA-IDMS DML Reference — PL/I

6.13 ATTACH (DC/UCF)

ATTACH TASK CODE (TASKATCH)

 PRIORITY (199)

 NOWAIT;

Status codes: Upon completion of the ATTACH function, the ERROR_STATUS
field of the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

3711 The task cannot be attached because the maximum number of tasks
has already been attached.

3712 The specified task code is not defined to the DC/UCF system.

3758 The task cannot be attached because the maximum number of
concurrent task threads was exceeded.

Chapter 6. Data Manipulation Language Statements 6-29

6.14 BIND MAP (DC/UCF)

6.14 BIND MAP (DC/UCF)

The BIND MAP statement identifies the location of a specified map request block
(MRB) and initializes MRB fields. For each MRB used by your program, code a
global BIND MAP statement. Global BIND MAP statements omit the RECORD
(record-name) parameter. For each record defined to a map, code a record-specific
BIND MAP statement. Record-specific BIND MAP statements include the RECORD
(record-name) parameter.

Global and record-specific versions of BIND MAP: The global and
record-specific versions of the BIND MAP statement function as follows:

■ Global — The BIND MAP statement applies to the map as a whole. It initializes
the entire MRB and fills in fields that apply to the map in general.

■ Record-specific — The BIND MAP statement applies only to the named map
record. It initializes the variable-storage address of the named record in the MRB.

Typically, your program issues a global BIND MAP statement for each map, followed
by a BIND MAP statement for each map record used by the program.

Including BIND MAP statements automatically: You can request the DML
precompiler to include global and record-specific BIND MAP statements automatically
by using the INCLUDE IDMS MAP_BINDS statement (see Chapter 5, “DML
Precompiler-Directive Statements” on page 5-1). This statement includes the
necessary BINDS for all maps and map records defined for the program.

Altering the address for a map record: Your program can alter the storage
address for a map record at any time by issuing another BIND MAP statement for that
record. After the initial global bind, all map records are considered unbound. Map
operations that use those records have no effect on storage. After binding a map
record to a storage address with a record-specific bind, subsequent map operations use
that address to access the record. To unbind a map record, issue a record-specific
BIND MAP statement that specifies the TO NULL option.

 Syntax

��─── BIND MAP (map-name) ─┬──�─

└─ RECORD (record-name) ───────────────────────────

─�────────────────────────────────────┬─ ; ───────────────────────────────────��

 ─┬───────────────────────────────┬──┘

└─ TO ─┬─ NULL───────────────┬──┘

└─ (record-location) ─┘

 Parameters

map-name
Initializes the MRB associated with the named map. Map-name is the 1- to
8-character name of an existing map. The map version defaults to the version that
you specify for the map with the DECLARE MAP statement.

6-30 CA-IDMS DML Reference — PL/I

6.14 BIND MAP (DC/UCF)

RECORD (record-name)
Initializes the variable-storage address of the named record in the MRB.
Record-name is the 1- to 32-character name of a record used by the map.

TO NULL/(record-location)
Optionally requests that the named record be unbound or specifies the address to
which the record will be bound:

NULL
Requests that the DBMS not bind the named record.

record-location
Specifies the address to which the named record will be bound.
Record-location is the symbolic name of a user-defined field that contains the
address; record-location defaults to record-name. Subsequent I/O operations
will use this area of storage for any operation associated with the record.

Example: The following statements bind the map EMPMAPLR and its five
associated map records:

BIND MAP (EMPMAPLR);

BIND MAP (EMPMAPLR) RECORD (EMPLOYEE);

BIND MAP (EMPMAPLR) RECORD (DEPARTMENT);

BIND MAP (EMPMAPLR) RECORD (JOB);

BIND MAP (EMPMAPLR) RECORD (OFFICE);

BIND MAP (EMPMAPLR) RECORD (EMP-DATE-WORK-REC);

Status codes: Upon completion of the BIND MAP function, the ERROR_STATUS
field in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

1472 Insufficient memory is available for load or storage allocation.

1474 An attempt to load a module from the load library or DDLDCLOD
failed.

Chapter 6. Data Manipulation Language Statements 6-31

6.15 BIND PROCEDURE

 6.15 BIND PROCEDURE

The BIND PROCEDURE statement establishes communication between your program
and a DBA-written database procedure (for example, a security routine). Use this
statement only in those instances in which the DBA-written procedure requires more
information from your program than the DBMS provides. Such instances are unusual.
Usually, you will not be aware of which procedures gain control before or after
various DML functions.

You can use the BIND PROCEDURE statement in both the navigational and Logical
Record Facility (LRF) environments.

 Syntax

��──── BIND PROCEDURE (procedure-name) TO (procedure-control-location); ──────��

 Parameters

procedure-name
Specifies the name of the DBA-written database procedure for which you want to
establish addressability. Procedure-name must refer to an 8-character field in
variable storage.

TO (procedure-control-location)
Specifies the location to which the named procedure will be bound.
Procedure-control-location is a fullword-aligned 256-byte area in variable storage.

If your program runs in a different partition than the central version, it may need
to pass information to the database procedure. When the DBMS invokes the
database procedure, it copies this information from the program storage area
identified by procedure-control-location into the IDMS application program
information block. The information passed is the information in
procedure-control-location when the BIND PROCEDURE was performed; it is
not the information in the program's storage at the time of the procedure call.

Example: The following statement binds the procedure with the variable name
PROGCHEK to the 256-byte area PROC_CTL:

BIND PROCEDURE (PROGCHEK) TO (PROC_CTL);

Status codes: Upon completion of the BIND PROCEDURE function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request was serviced successfully.

6-32 CA-IDMS DML Reference — PL/I

6.15 BIND PROCEDURE

Status code Meaning

1400 The DBMS cannot recognize the BIND PROCEDURE statement.
This code usually indicates that the IDMS-DB communications
block (SUBSCHEMA_CTRL) is not aligned on a fullword
boundary.

1408 The subschema does not contain the named procedure.

1418 The procedure was improperly bound to location 0.

1472 Not enough memory is available to load the database procedure
dynamically.

1474 An attempt to load a module from the load library or DDLDCLOD
failed.

Chapter 6. Data Manipulation Language Statements 6-33

6.16 BIND RECORD

 6.16 BIND RECORD

The BIND RECORD statement establishes addressability for a record in program
variable storage. In most cases, you do not have to issue individual BIND RECORD
statements, since the INCLUDE IDMS SUBSCHEMA_BINDS statement generates the
necessary statements as a group. (see Chapter 5, “DML Precompiler-Directive
Statements” on page 5-1). Nevertheless, you can issue BIND RECORD commands
separately as necessary (for example, to bind several records to the same storage
location). In any case, you must establish addressability for each subschema record
used by your program.

After each BIND RECORD statement, your program should perform the
IDMS_STATUS routine to ensure that the statement executed successfully.

 Syntax

��─── BIND RECORD (record-name) ─┬────────────────────────┬─ ; ───────────────��

└─ TO (record-location) ─┘

 Parameters

(record-name)
Names the record bound to a location in variable storage. The location
corresponds to the record description copied into the program. Record-name must
specify a record included in the subschema.

TO (record-location)
Optionally allows you to bind the record to a specific location. The data defined
in record-location must be identical in length to the data defined in record-name.

Note: Be careful when using the TO (record-location) option. Source-object
mismapping can result from improper use. If your program contains more
than one copy of a given database record description, you must be sure to
bind the proper record description at the proper time.

Example: The following statement binds the EMPLOYEE record:

BIND RECORD (EMPLOYEE);

Status codes: Upon completion of the BIND RECORD function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request was serviced successfully.

1400 The DBMS cannot recognize the BIND RECORD statement. This
code usually indicates that the IDMS-DB communications block
(SUBSCHEMA_CTRL) is not aligned on a fullword boundary.

6-34 CA-IDMS DML Reference — PL/I

6.16 BIND RECORD

Status code Meaning

1408 The subschema does not contain the named record. Your program
probably invoked the wrong subschema.

1418 The record was improperly bound to location 0.

1472 Insufficient memory is available to load a database procedure
dynamically.

1474 An attempt to load a module from the load library or DDLDCLOD
failed.

Chapter 6. Data Manipulation Language Statements 6-35

6.17 BIND RUN_UNIT

 6.17 BIND RUN_UNIT

The BIND RUN_UNIT statement:

■ Establishes a run unit for accessing the database

■ Identifies the location of the IDMS-DB communications block being used

■ Names the subschema to be loaded for the run unit

■ Names the node under which the run unit will execute

■ Identifies the database to be accessed

■ Identifies the dictionary in which a subschema resides

■ Identifies the node that controls the dictionary

BIND RUN_UNIT must be the first functional DML call passed to the DBMS at
execution time. BIND RUN_UNIT must logically precede all other DML statements
(for example, BIND RECORD, READY, FIND) in your program.

When you don't need BIND RUN_UNIT: If you use the INCLUDE IDMS
SUBSCHEMA_BINDS statement (see Chapter 5, “DML Precompiler-Directive
Statements” on page 5-1) in your program, you do not need the BIND RUN_UNIT
statement. INCLUDE IDMS SUBSCHEMA_BINDS automatically invokes the
necessary binds.

Program registration: Some sites require program registration, that is, they require
all programs to be registered in the dictionary before compilation. If your site requires
program registration, your program must initialize the PROGRAM_NAME field of the
IDMS communications block either automatically or manually:

■ Automatically — A PL/I assignment statement automatically generated by
INCLUDE IDMS SUBSCHEMA_BINDS moves the program name to the
PROGRAM_NAME field.

■ Manually — You code a PL/I assignment statement prior to the BIND
RUN_UNIT statement. For example:

PROGRAM_NAME = 'EMPDISP';

You can use the BIND RUN_UNIT statement in both the navigational and Logical
Record Facility (LRF) environments.

 Syntax

6-36 CA-IDMS DML Reference — PL/I

6.17 BIND RUN_UNIT

��─── BIND RUN_UNIT ─┬──────────────────────────────┬─────────────────────────�

└─ SUBSCHEMA (subschema-name) ─┘

 �─┬─────────────────────────────┬──�

└─┬─ DBNODE ───┬─ (nodename) ─┘

└─ NODENAME ─┘

 �─┬──────────────────────────┬─┬───────────────────────┬─────────────────────�

└─ DBNAME (database-name) ─┘ └─ DICTNODE (nodename) ─┘

 �─┬──────────────────────────────┬─ ; ───────────────────────────────────────��

└─ DICTNAME (dictionary-name) ─┘

 Parameters

SUBSCHEMA (subschema-name)
Identifies a subschema view other than that specified in the DECLARE
SUBSCHEMA statement. Subschema-name must be the 1- to 8-character name of
a subschema.

Note: You should use the SUBSCHEMA subschema-name option carefully.
Improper use can lead to mismappings between the named subschema and
record descriptions in variable storage.

DBNODE/NODENAME (nodename)
Specifies the node where the database resides. Nodename is either the symbolic
name of a user-defined 8-character field in variable storage or the node name
itself, enclosed in single quotation marks. The keywords DBNODE and
NODENAME are synonymous.

DBNAME (database-name)
Names the database to be accessed by the run unit. Database-name is either the
symbolic name of a user-defined 8-character field in variable storage, or the
database name itself enclosed in single quotation marks.

DICTNODE (nodename)
Names the node that controls the data dictionary where the subschema resides.
Nodename is either the symbolic name of a user-defined 8-character field in
variable storage, or the nodename itself enclosed in single quotation marks.

DICTNAME (dictionary-name)
Names the dictionary where the subschema resides. Dictionary-name is either the
symbolic name of a user-defined 8-character field in variable storage, or the
dictionary name itself enclosed in single quotation marks.

Note: Specifying DBNODE, DBNAME, DICTNODE, and DICTNAME as BIND
RUN_UNIT parameters overrides any corresponding parameters set using the
system DCUF SET statement (online) or the SYSIDMS job stream parameters
(batch). For information on DCUF SET, refer to CA-IDMS System Tasks and
Operator Commands. For information on SYSIDMS, refer to CA-IDMS
Database Administration.

Example: The following example illustrates how a batch program accesses a
subschema, EMPSS01, stored in dictionary PRODICT1 at node DEVT. The run unit
accesses database PRODDB1 at the same node.

Chapter 6. Data Manipulation Language Statements 6-37

6.17 BIND RUN_UNIT

BIND RUN_UNIT SUBSCHEMA (EMPSS�1) NODENAME (DEVT)

DBNAME (PRODDB1) DICTNODE (DEVT) DICTNAME (PRODICT1);

Status codes: Upon completion of the BIND RUN_UNIT function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request was serviced successfully.

1400 The DBMS cannot recognize the BIND RUN_UNIT statement.
This code usually indicates that the IDMS-DB communications
block (SUBSCHEMA_CTRL) is not aligned on a fullword
boundary.

1467 The subschema invoked does not match the subschema object
tables.

1469 The run unit is not bound to the DBMS. This code indicates that
the central version is not active, that the central version is not
accepting new run units, or that the run unit's connection to the
central version is broken due to timeout or other factors, as noted
on the CV log.

1470 A journal file will not open (local mode only); the most probable
cause is that the JCL doesn't correctly specify the journal file.

1472 The available memory is insufficient to load a subschema or
database procedure dynamically.

1473 The central version is not accepting new run units.

1474 The subschema was not found in the dictionary load area or in the
load library.

1477 The run unit was already bound.

1480 The node specified in the DBNODE clause is not active or was
disabled from the system generation configuration.

1481 IDMS does not know the database specified in the DBNAME
clause.

1482 The named subschema is not valid under the database specified in
the DBNAME clause.

1483 The available memory is insufficient to allocate native VSAM work
areas.

6-38 CA-IDMS DML Reference — PL/I

6.18 BIND TASK (DC/UCF)

6.18 BIND TASK (DC/UCF)

The BIND TASK statement initiates a system task when the operating mode is
DC_BATCH. This statement establishes communication with the DC/UCF system
and, if accessing system queues, allocates a packet-data movement buffer to contain
the queue data. Once a task is started, the program can issue any number of
consecutive BIND-READY-FINISH sequences.

 Syntax

��─── BIND TASK ──�

 �─┬───────────────────────┬─ ; ──��

└─ NODENAME (nodename) ─┘

 Parameters

NODENAME (nodename)
Specifies the 1- to 8-character name of the node to which the task will be bound.
Nodename is either the symbolic name of a user-defined field that contains the
node name or the node name itself enclosed in single quotation marks. The
specified node name must match the node named in the DDS statement at system
generation.

Example: The following statement establishes communication with a DC/UCF
system:

 BIND TASK;

Status codes: Upon completion of the BIND TASK function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-39

6.19 BIND TRANSACTION STATISTICS (DC/UCF)

6.19 BIND TRANSACTION STATISTICS (DC/UCF)

The BIND TRANSACTION STATISTICS statement defines the beginning of a
transaction for the purposes of collecting transaction statistics. The system allocates a
block of storage in which to accumulate these statistics. Because this block is owned
by the logical terminal associated with the current task, the BIND TRANSACTION
STATISTICS statement cannot be used with nonterminal tasks.

Note: If a transaction statistics block (TSB) is already allocated for the logical
terminal associated with the current task, the BIND request clears the block
and writes any previously accumulated transaction statistics to the log file.

When a BIND TRANSACTION STATISTICS request is issued, the system assigns the
transaction a 40-character identifier; the first 32 characters are the identifier of the
signed-on user (if any) and the last eight characters are the identifier of the logical
terminal associated with the current task.

 Syntax

��─── BIND TRANSACTION STATISTICS; ───��

Example: The following example illustrates the BIND TRANSACTION
STATISTICS statement:

BIND TRANSACTION STATISTICS;

Status codes: Upon completion of the BIND TRANSACTION STATISTICS
function, the ERROR_STATUS field in the IDMS-DC communications block indicates
the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully; any existing transaction
statistics block was written to the log file before being cleared.

3801 Storage for the transaction statistics block is not available; to wait
would cause a deadlock.

3810 A new transaction statistics block has been allocated.

3831 Either the parameter list is invalid or no logical terminal element
(LTE) is associated with the issuing task.

3850 The collection of transaction statistics or task statistics has not been
enabled during system generation.

6-40 CA-IDMS DML Reference — PL/I

6.20 CHANGE PRIORITY (DC/UCF)

6.20 CHANGE PRIORITY (DC/UCF)

The CHANGE PRIORITY statement changes the dispatching priority of the issuing
task. The new dispatching priority applies only to the current execution of the task.
CHANGE PRIORITY does not relinquish control to another task and cannot be used
to alter the priority of other tasks.

 Syntax

��─── CHANGE PRIORITY TO (priority); ───��

 Parameter

priority
Specifies a new dispatching priority for the issuing task. Priority is either the
symbolic name of a user-defined field that contains the priority value, or the value
itself expressed as a numeric constant in the range 0 through 240.

Example: The following example changes the dispatching priority of the issuing task
to the value contained in the PRIORITY_210 field:

CHANGE PRIORITY TO (PRIORITY_21�);

Status codes: Upon completion of the CHANGE PRIORITY function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-41

6.21 CHECK TERMINAL (DC/UCF)

6.21 CHECK TERMINAL (DC/UCF)

The CHECK TERMINAL statement tests whether a previously issued asynchronous
I/O operation is complete. If a READ TERMINAL, WRITE TERMINAL, or WRITE
THEN READ TERMINAL request specifies the NOWAIT option, the program must
issue a CHECK TERMINAL request before specifying any other I/O operation. If the
I/O operation is not complete, the system suspends task execution. When the I/O
operation is complete, the task resumes execution according to its established
dispatching priority.

 Syntax

��─── CHECK TERMINAL; ──��

Status codes: Upon completion of the CHECK TERMINAL function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4519 The input area specified for the return of data is too small; the
returned data has been truncated to fit the available space.

4525 The output operation has been interrupted; the terminal operator has
pressed ATTENTION or BREAK.

4526 A logical error (for example, an invalid control character) has been
encountered in the output data stream.

4527 A permanent I/O error has occurred during processing.

4528 The dial-up line for the terminal being used has been disconnected.

4531 The terminal request block (TRB) contains an invalid field,
indicating a possible error in the program's parameters.

4539 The terminal device associated with the issuing task is out of
service.

6-42 CA-IDMS DML Reference — PL/I

6.22 COMMIT

 6.22 COMMIT

The COMMIT statement requests that CA-IDMS/DB write a checkpoint to the journal
file to designate the start or end of specific database, scratch, or queue record access
activities associated with the issuing run unit or task. COMMIT simulates a
FINISH-BIND-READY sequence without relinquishing control of database resources.

You can use the COMMIT statement in both the navigational and Logical Record
Facility (LRF) environments.

Currency: Use of the ALL parameter with COMMIT (COMMIT ALL) sets all
currencies to null.

 Syntax

��─── COMMIT ─┬────────┬─┬─────────┬─ ; ──────────────────────────────────────��

└─ TASK ─┘ └─ (ALL) ─┘

 Parameters

TASK
Establishes checkpoints for all data areas associated with all run units, scratch
activities, queue activities, and print activities initiated by the issuing task.

Note: The TASK parameter applies to CA-IDMS/DC only.

(ALL)
Releases all locks held on records in database, scratch, and queue areas associated
with the issuing task or run unit, and sets all currencies to null.

Example: The following statement writes a commit checkpoint to the journal file:

 COMMIT;

Status codes: Upon completion of the COMMIT function, the ERROR_STATUS
field in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5031 The specified request is invalid; the program may contain a logic
error.

5096 Too many run units are currently active; check the system log for
details.

5097 An invalid status has been received from DBIO/DBMS; check the
system log for details.

Chapter 6. Data Manipulation Language Statements 6-43

6.23 CONNECT

 6.23 CONNECT

The CONNECT statement establishes a record occurrence as a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set.

Native VSAM users: The CONNECT statement is not valid since all sets in native
VSAM data sets must be defined as mandatory automatic.

Before executing the CONNECT statement, satisfy these conditions:

■ Ready all areas affected either explicitly or implicitly by the CONNECT statement
in one of the update usage modes (see 6.61, “READY” on page 6-164 later in this
chapter).

■ Establish the specified record as current of its record type.

■ Establish the occurrence of the set into which the specified record will be
connected. The current record of set determines the set occurrence and, if set
order is NEXT or PRIOR, the position at which the specified record will be
connected within the set.

Currency: Following successful execution of a CONNECT statement, the specified
record is current of run unit, its record type, its area, and all sets in which it currently
participates.

 Syntax

��─── CONNECT RECORD (record-name) SET (set-name); ───────────────────────────��

 Parameters

RECORD (record-name)
Specifies the record type to be connected. Record-name must be a record included
in the subschema and must be defined as an optional automatic, optional manual,
or mandatory manual member of the set to which it is being connected.

SET (set-name)
Specifies the set to which the member record is to be connected. Set-name must
be a set included in the subschema. The record is connected to the set in
accordance with the ordering rules defined for that set in the schema.

Example: The following statement connects the current EMPLOYEE record to the
current occurrence of the OFFICE_EMPLOYEE set:

CONNECT RECORD (EMPLOYEE) SET (OFFICE_EMPLOYEE);

The following figure illustrates the steps required to connect an EMPLOYEE record to
an occurrence of the OFFICE_EMPLOYEE set. To connect EMPLOYEE 459 to
OFFICE 1 in the OFFICE_EMPLOYEE set, establish EMPLOYEE 459 as current of
record type, locate the proper occurrence of the OFFICE record, and issue the
CONNECT command.

6-44 CA-IDMS DML Reference — PL/I

6.23 CONNECT

Status codes: Upon completion of the CONNECT function, the ERROR_STATUS
field in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0705 The CONNECT would violate a duplicates-not-allowed option.

0706 Currency has not been established for the named record or set.

0708 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

0709 The named record's area has not been readied in one of the update
usage modes.

Chapter 6. Data Manipulation Language Statements 6-45

6.23 CONNECT

Status code Meaning

0710 The subschema specifies an access restriction that prohibits
connecting the named record in the named set.

0714 The CONNECT statement cannot be executed because the named
record has been defined as a mandatory automatic member of the
set.

0716 The record cannot be connected to a set in which it is already a
member.

0721 An area other than the area of the named record has been readied
with an incorrect usage mode.

0725 Currency has not been established for the named set type.

6-46 CA-IDMS DML Reference — PL/I

6.24 DC RETURN (DC/UCF)

6.24 DC RETURN (DC/UCF)

The DC RETURN statement returns control to a program at the next higher level
within a task. Additionally, you can use the DC RETURN statement to specify:

■ The next task to be initiated on the same terminal

■ Recovery procedures for abend routines established by SET ABEND EXIT
(STAE) functions

■ The action to be taken by the system if the terminal operator fails to initiate the
next task

Control returns to the program or system: Following a DC RETURN request,
control returns to the program at the next higher level within the task. If the issuing
program is the highest level program, control returns to the system. Any DC
RETURN statement can include a NEXT TASK CODE option to specify the next task
to be initiated by the system. However, the position of the issuing program within the
task governs whether the specified task will, in fact, receive control.

When the system receives control from the highest level program that issued a DC
RETURN NEXT TASK CODE request, the specified task is executed immediately if
the specified task code has been assigned the NOINPUT attribute during system
generation; if the task code was assigned the INPUT attribute, the task executes only
when the terminal operator presses an attention identifier (AID) key. Typical AID
keys include all PA and PF keys, ENTER, and CLEAR.

 Syntax

��─── DC RETURN ─┬───────────────────────────────────┬────────────────────────�

└─ NEXT TASK CODE (next-task-code) ─┘

 �─┬───┬─ ; ────────────────────��

 │ ┌───────────────────────────────────┐ │

└─ TIMEOUT ─↓─┬─ INTERVAL (timeout-interval) ─┬─┴─┘

└─ PROGRAM (timeout-program) ───┘

 Parameters

NEXT TASK CODE (next-task-code)
Specifies the 1- to 8-character code associated with a task to be initiated on the
same terminal. Next-task-code is either the symbolic name of a user-defined field
that contains the task code or the task code itself enclosed in single quotation
marks. The specified task code must be defined to the system under which the
task is running, either during system generation or at runtime, by using a DCMT
VARY DYNAMIC TASK command. For more information about DCMT VARY
DYNAMIC TASK, refer to CA-IDMS System Tasks and Operator Commands.

TIMEOUT
Specifies the action the system is to take if the terminal operator fails to enter data
required to initiate a task. This parameter overrides resource timeout interval and
program specifications established during system generation.

Chapter 6. Data Manipulation Language Statements 6-47

6.24 DC RETURN (DC/UCF)

INTERVAL (timeout-interval)
Specifies the time, in seconds, that can elapse before the system releases the
resources held by the terminal on which the task is executing.
Timeout-interval is either the symbolic name for a user-defined FIXED
BINARY(31) field that contains the timeout interval or the interval itself
expressed as a numeric constant.

PROGRAM (timeout-program)
Specifies the 1- to 8-character name of the program to be invoked when the
specified timeout interval has been reached. This program handles and
releases resources held by the terminal on which the task was executing.
Timeout-program is either the symbolic name of a user-defined field that
contains the program name or the name itself enclosed in single quotation
marks. The specified program must be defined to the system either during
system generation or at runtime by using a DCMT VARY DYNAMIC
PROGRAM command. For more information on DCMT VARY DYNAMIC
PROGRAM, refer to CA-IDMS System Tasks and Operator Commands.

Example: The following statement illustrates the use of DC RETURN. The task
code associated with MENU_TASK_CODE, if defined with the INPUT parameter, will
be invoked the next time the terminal operator presses an attention identifier (AID)
key; if MENU_TASK_CODE is defined with the NOINPUT parameter, it will be
invoked immediately.

 DC RETURN

NEXT TASK CODE (MENU_TASK_CODE);

The following figure illustrates how the system executes a task when DC RETURN
statements within three programs specify the NEXT TASK CODE option.

In DC RETURN Processing Task A invokes program A. Program A links to program
B, which in turn links to program C. Program C issues a DC RETURN NEXT TASK
CODE ('Z') request; control returns to program B. Program B contains a DC
RETURN NEXT TASK CODE ('Y') request, which takes precedence over program C's
DC RETURN specification. Control returns to program A, which issues a DC
RETURN NEXT TASK CODE ('X') request. Because program A is at the highest
level in the task, task X will be invoked.

6-48 CA-IDMS DML Reference — PL/I

6.24 DC RETURN (DC/UCF)

 DC/UCF SYSTEM

 ───

 TASK X

TASK A ┌ - - - - - - - - - - - - - ┐

 ───────────┬───────────↑───────────────────────────┼─────────────────────────

 │ │ │

 │ │ ┌──────↓──────┐

 │ │ │ │

 ┌────────↓────────┐ │ │ PROGRAM X │

 │ PROGRAM A │ │ │ │

│ . │ │ └─────────────┘

│ . │ │ (RETURN)

┌─┤ . ←-─┼ - - - - - - - - - - - ──┐

 │ │ DC RETURN │ │

│ │ NEXT TASK CODE │ │ │

│ │ X │ │

 │ └────────┬────────┘ │ │

 │ └───────────┘

 │ │

 │

 │ │

 │

 │ │

 │ (LINK B) ┌─────────────────┐

 └───────────────────────────→ PROGRAM B │ │

│ . │

│ . │ │

┌─┤ . │ (RETURN)

│ │ DC RETURN ←-─┼─ - - - - - - - - - - - - ─┐

│ │ NEXT TASK CODE │

│ │ Y │ │ │

 │ └────────┬────────┘

│ └ - - - - ─┘ │

 │

 │ │

 │ (LINK C) ┌─────────────────┐

 └─────────────────────────────→ PROGRAM C │ │

│ . │

│ . │ │

│ . │

 │ DC RETURN │ │

│ NEXT TASK CODE │

│ Z │ │

 └────────┬────────┘

└ - - - - - ┘

Status codes: Because control is returned to the next-higher level, there is no need
to check the ERROR_STATUS field.

Chapter 6. Data Manipulation Language Statements 6-49

6.25 DELETE QUEUE (DC/UCF)

6.25 DELETE QUEUE (DC/UCF)

The DELETE QUEUE statement deletes all or part of a queue. If only one queue
record is deleted, the system maintains currency within the queue by saving the next
and prior currencies of the deleted record.

 Syntax

��─── DELETE QUEUE ─┬─────────────────┬─┬─────────────┬─ ; ───────────────────�

└─ ID (queue-id) ─┘ ├─ CURRENT ← ─┤

└─ ALL ───────┘

 Parameters

ID (queue-id)
Specifies the 1- to 16-character ID of the queue that contains the record to be
deleted. Queue-id is either the symbolic name of a user-defined field that contains
the ID or the ID itself enclosed in single quotation marks. If the queue ID is not
specified, a blank ID is assumed.

CURRENT
Deletes the current record of the queue associated with the requesting task.
CURRENT is the default.

ALL
Deletes all records in the queue and the queue header id.

Example: The following statement deletes the current record in the RES_Q queue:

 DELETE QUEUE

 ID ('RES_Q')

 CURRENT;

Status codes: Upon completion of the DELETE QUEUE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4404 The requested queue header record cannot be found.

4405 The requested queue record cannot be found.

4406 No resource control element (RCE) exists for the queue record,
indicating that currency has not been established.

4407 An I/O error has occurred during processing, or the queue upper
limit has been reached.

4431 The parameter list is invalid.

6-50 CA-IDMS DML Reference — PL/I

6.26 DELETE SCRATCH (DC/UCF)

6.26 DELETE SCRATCH (DC/UCF)

The DELETE SCRATCH statement deletes one scratch record or all records in the
scratch area.

 Syntax

��─── DELETE SCRATCH-─┬──────────────────────────────┬────────────────────────�

└─ AREA ID (scratch-area-id) ─┘

 �─┬─────────────────────────────────┬──�

├─ CURRENT ───────────────────────┤

├─ FIRST ─────────────────────────┤

├─ LAST ──────────────────────────┤

├─ NEXT ──────────────────────────┤

├─ PRIOR ─────────────────────────┤

├─ ALL ───────────────────────────┤

└─ RECORD ID (scratch-record-id) ─┘

 �─┬──┬─ ; ─────────────────��

└─ RETURN RECORD ID INTO (return-scratch-record-id) ─┘

 Parameters

AREA ID (scratch-area-id)
Specifies the 1- to 8-character ID of the scratch area associated with the scratch
records being deleted. Scratch-area-id is either the symbolic name of a
user-defined field that contains the scratch area ID or the ID itself enclosed in
single quotation marks. If the AREA ID parameter is not specified, the system
assumes an area ID of 8 blanks.

CURRENT
Deletes the current record in the specified scratch area (that is, that record most
recently referenced by another scratch function). CURRENT is the default.

FIRST
Deletes the first record in the specified scratch area.

LAST
Deletes the last record in the specified scratch area.

NEXT
Deletes the next record in the specified scratch area.

PRIOR
Deletes the prior record in the specified scratch area.

ALL
Deletes all records in the specified scratch area.

RECORD ID (scratch-record-id)
Deletes the record identified by scratch-record-id. Scratch-record-id is the
symbolic name of a user-defined field that contains the ID.

Chapter 6. Data Manipulation Language Statements 6-51

6.26 DELETE SCRATCH (DC/UCF)

RETURN RECORD ID INTO (return-scratch-record-id)
Specifies the location in the program to which the system will return the ID of the
last record deleted by means of the DELETE SCRATCH function.
Return-scratch-record-id is the symbolic name of a user-defined 4-byte field.

Example: The following statement deletes the scratch record that is prior to the
current scratch record and returns the ID of the deleted record to the SCR_REC_ID
field:

 DELETE SCRATCH

 PRIOR

RETURN RECORD ID INTO (SCR_REC_ID);

Status codes: Upon completion of the DELETE SCRATCH function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4303 The requested scratch area ID cannot be found.

4305 The requested scratch record ID cannot be found.

4307 An I/O error has occurred during processing.

4331 The parameter list is invalid.

6-52 CA-IDMS DML Reference — PL/I

6.27 DELETE TABLE (DC/UCF)

6.27 DELETE TABLE (DC/UCF)

The DELETE TABLE statement notifies the system that the issuing task has finished
using a table that has been loaded into the program pool by using the LOAD TABLE
function. DELETE TABLE does not physically delete reusable tables from the
program pool; rather, it decrements the in-use count maintained by the DC/UCF
system. An in-use count of 0 signals to the system that the space occupied by the
table can be reused.

 Syntax

��─── DELETE TABLE FROM (table-location-pointer); ────────────────────────────��

 Parameter

table-location-pointer
Specifies a table location where the in-use count maintained by the system is to be
decremented. Table-location-pointer specifies the variable-storage pointer location
that was set when the table was loaded via a LOAD TABLE request.

Example: The following example releases a previously loaded table from the
location in variable storage identified by RATE_TABLE_PTR:

DELETE TABLE FROM (RATE_TABLE_PTR);

Status codes: Upon completion of the DELETE TABLE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3433 The specified table was not loaded by the task.

Chapter 6. Data Manipulation Language Statements 6-53

6.28 DEQUEUE (DC/UCF)

 6.28 DEQUEUE (DC/UCF)

The DEQUEUE statement releases resources acquired by the issuing task with an
ENQUEUE request. Acquired resources not released explicitly with a DEQUEUE
request are released automatically at task termination.

 Syntax

��─── DEQUEUE ─┬─── ALL ──┬─ ; ───��

│ ┌──┐ │

└─↓─ NAME (resource-id) LENGTH (resource-id-length) ─┴─┘

 Parameters

ALL
Releases all resources acquired by the issuing task by means of ENQUEUE
requests.

NAME (resource-id)
Specifies the resources to be dequeued and supplies the length of each resource:
Resource-id is the symbolic name of a user-defined field that contains the 1- to
255-character resource ID. Multiple NAME parameters must be separated by at
least one blank.

LENGTH (resource-id-length)
Specifies either the symbolic name of a user-defined FIXED BINARY(31) field
that contains the length of the resource ID, or the length itself expressed as a
numeric constant.

Example: The following statement releases all the resources enqueued by the issuing
task:

DEQUEUE NAME (PAYROLL_LOCK)

 LENGTH (16);

Status codes: Upon completion of the DEQUEUE function, the ERROR_STATUS
field in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3913 At least one resource ID cannot be found; all resources that were
located have been dequeued.

3931 The parameter list is invalid.

6-54 CA-IDMS DML Reference — PL/I

6.29 DISCONNECT

 6.29 DISCONNECT

The DISCONNECT statement cancels the current membership of a record occurrence
in a set occurrence. The named record must be defined as an optional member of the
named set.

Native VSAM users: The DISCONNECT statement is not valid since all sets in
native VSAM data sets must be defined as mandatory automatic.

Before executing the DISCONNECT statement, satisfy the following conditions:

■ Ready all areas affected either explicitly or implicitly by the DISCONNECT
statement with one of the three update usage modes (see 6.61, “READY” on
page 6-164, later in this chapter).

■ Establish the named record as current of its record type.

■ Make sure that the named record currently participates as a member in an
occurrence of the named set.

Following successful execution of the DISCONNECT statement, the named record can
no longer be accessed through the set for which membership was canceled. The
disconnected record can still be accessed either by means of a complete scan of the
area in which it participates or directly through its db-key, if known. A disconnected
record can also be accessed either through any other sets in which it participates as a
member or if it has a location mode of CALC.

Currency: A successfully executed DISCONNECT statement nullifies currency in
the specified set. However, next, prior, and owner of set are maintained, enabling
continued access within the set. The disconnected record is current of run unit, its
record type, its area, and any other sets in which it participates. The following figure
illustrates the steps required to disconnect an EMPLOYEE record from an occurrence
of the OFFICE_EMPLOYEE set.

To disconnect EMPLOYEE 4 from OFFICE 1 of the OFFICE_EMPLOYEE set, enter
the database on OFFICE 1, establish EMPLOYEE 4 as current of the EMPLOYEE
record type, and disconnect it from the OFFICE_EMPLOYEE set.

Chapter 6. Data Manipulation Language Statements 6-55

6.29 DISCONNECT

 Syntax

��─── DISCONNECT RECORD (record-name) SET (set-name); ────────────────────────��

 Parameters

RECORD (record-name)
Specifies the record type to be disconnected. Record-name must be a record
included in the subschema and must be defined as an optional member of the
specified set.

SET (set-name)
Specifies the set from which the named record will be disconnected. Set-name
must be a set included in the subschema.

Example: The following statement disconnects the current EMPLOYEE record from
the OFFICE_EMPLOYEE set:

DISCONNECT RECORD (EMPLOYEE) SET (OFFICE_EMPLOYEE);

Status codes: Upon completion of the DISCONNECT function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

1106 Currency has not been established for the named record.

1108 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

1109 The named record's area has not been readied in one of the update
usage modes.

6-56 CA-IDMS DML Reference — PL/I

6.29 DISCONNECT

Status code Meaning

1110 The subschema specifies an access restriction that prohibits use of
the DISCONNECT statement.

1115 The DISCONNECT statement cannot be executed because the
named record has been defined as a mandatory member of the set.

1121 An area other than the area that contains the named record has
been readied with an incorrect usage mode.

1122 The named record is not currently a member of the specified set.

Chapter 6. Data Manipulation Language Statements 6-57

6.30 END LINE TERMINAL SESSION (DC/UCF)

6.30 END LINE TERMINAL SESSION (DC/UCF)

The END LINE TERMINAL SESSION statement terminates the current line-mode I/O
session. All output data lines that remain in the current buffer and all pages queued
for asynchronous I/O operations are deleted.

 Syntax

��─── END LINE TERMINAL session ; ──��

Example: The following statement terminates a line mode I/O session:

END LINE TERMINAL SESSION;

Status codes: There are no codes associated with the END LINE TERMINAL
SESSION command.

6-58 CA-IDMS DML Reference — PL/I

6.31 END TRANSACTION STATISTICS (DC/UCF)

6.31 END TRANSACTION STATISTICS (DC/UCF)

The END TRANSACTION STATISTICS statement defines the end of a transaction.
The transaction typically ends when the issuing task terminates. Optionally, END
TRANSACTION STATISTICS can be used to write the transaction statistics block
(TSB) to the system log file and to return the TSB to a preallocated location in
variable storage. The system returns a copy of the TSB to program variable storage.

 Syntax

��─── END TRANSACTION STATISTICS ─┬───────────┬───────────────────────────────�

├─ WRITE ← ─┤

└─ NOWRITE ─┘

 �─┬────────────────────────────────────┬─ ; ─────────────────────────────────��

└─ INTO (return-stat-data-location) ─┘

 Parameters

WRITE/NOWRITE
Indicates whether the TSB will be written to the system log file when the task
terminates. The default is WRITE.

INTO (return-stat-data-location)
Specifies the location in program variable storage into which the system will
return the TSB. Return-stat-data-location is the symbolic name of a user-defined
field.

Example: The following statement ends a transaction, writes statistics to the log file,
and returns a copy of the TSB to the STATISTICS_BLOCK field:

END TRANSACTION STATISTICS

 WRITE

 INTO (STATISTICS_BLOCK);

Status codes: Upon completion of the END TRANSACTION STATISTICS
function, the ERROR_STATUS field in the IDMS-DC communications block indicates
the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3801 Storage for the transaction statistics block is not available; to wait
would cause a deadlock.

3813 No transaction statistics block exists; a BIND TRANSACTION
STATISTICS request has not been issued.

3831 Either the parameter list is invalid or no logical terminal element
(LTE) is associated with the issuing task.

3850 The collection of transaction statistics or task statistics has not been
enabled during system generation.

Chapter 6. Data Manipulation Language Statements 6-59

6.32 ENDPAGE (DC/UCF)

 6.32 ENDPAGE (DC/UCF)

The ENDPAGE statement terminates a map paging session, clears the scratch record
for the session, and clears the map paging options for the completed session. A
STARTPAGE/ENDPAGE pair encloses commands that handle a pageable map at
runtime. The STARTPAGE command is discussed later in this chapter.

 Syntax

��─── ENDPAGE session ; ──��

Example: The following statement ends a map paging session:

 ENDPAGE SESSION;

Status codes: Upon completion of the ENDPAGE function, the ERROR_STATUS
field in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

6-60 CA-IDMS DML Reference — PL/I

6.33 ENQUEUE (DC/UCF)

 6.33 ENQUEUE (DC/UCF)

The ENQUEUE statement acquires or tests the availability of a resource or list of
resources. Resources are defined during installation and system generation and
typically include storage areas, common routines, queues, and processor time.

An enqueued resource can be exclusive or shared:

■ Exclusive — The resource is owned exclusively by the issuing task and is not
available to any other tasks. The system prohibits other tasks from obtaining
resources that have been ENQUEUED exclusively.

Note: An exclusive ENQUEUE request prohibits another task from enqueueing a
resource by name; however, it does not prohibit the use of the resource by
another task. Therefore, to effect true resource protection, you must
enqueue and dequeue resources consistently.

■ Shared — The resource is available to all tasks. The system allows other tasks to
issue nonexclusive ENQUEUE requests for the resources, permitting the resources
to be shared.

 Syntax

��─── ENQUEUE ─┬──────────┬───�

├─ WAIT ← ─┤

├─ NOWAIT ─┤

└─ TEST ───┘

 ┌───┐

 �─↓─ NAME (resource-id) LENGTH (resource-id-length) ──┬───────────────┬─┴ ; ─��

├─ EXCLUSIVE ← ─┤

└─ SHARED ──────┘

 Parameters

WAIT
Specifies that the system is to wait for all resources to be freed if it cannot service
the request immediately. WAIT is the default.

NOWAIT
Specifies that the system is not to wait to acquire resources that are not currently
available. If NOWAIT is specified, the program should check the
ERROR_STATUS field in the IDMS-DC communications block to determine if
the function has been completed. If the ERROR_STATUS value is 3901,
indicating that a resource could not be obtained immediately, the request has not
been serviced and the program should perform alternative processing before
reissuing the NOWAIT request.

TEST
Tests the availability of the specified resources. If TEST is specified, the program
should check the ERROR_STATUS field in the IDMS-DC communications block
to determine the outcome of the test.

Chapter 6. Data Manipulation Language Statements 6-61

6.33 ENQUEUE (DC/UCF)

NAME (resource-id)
Names the 1- to 255-character ID associated with the resource. Resource-id must
be a user-defined field that contains the resource ID. The specified resource ID
must be the name of a resource defined to the system. Any resource name can be
specified, provided that all programs that access the resource use the same name.
Multiple NAME parameters must be separated by at least one blank.

LENGTH (resource-id-length)
Specifies the symbolic name of either a user-defined FIXED BINARY(31) field
that contains the length of the resource ID or the length itself expressed as a
numeric constant.

EXCLUSIVE/SHARED
Assigns the exclusive or shared attribute to the named resource. The default
attribute is EXCLUSIVE.

Example: The following statement enqueues the CODE_VALUE and
PAYROLL_LOCK resources. CODE_VALUE is reserved for exclusive use by the
issuing task; PAYROLL_LOCK can be shared.

 ENQUEUE

 WAIT

NAME (CODE_VALUE) LENGTH (1�)

NAME (PAYROLL_LOCK) LENGTH (16) SHARED;

The following statement tests the availability of the resource whose identifier is
contained in the RESOURCE_NAME field:

 ENQUEUE

 TEST

NAME (RESOURCE_NAME) LENGTH (RESOURCE_NAME_LENGTH);

Status codes: Upon completion of an ENQUEUE function to acquire resources,
the ERROR_STATUS field in the IDMS-DC communications block indicates the
outcome of the operation:

Upon completion of an ENQUEUE function to test resources, the ERROR_STATUS
field in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3901 At least one of the requested resources cannot be enqueued
immediately; to wait would cause a deadlock. No new resources
have been acquired.

3908 At least one of the requested exclusive resources is currently owned
by another task. No new resources have been acquired.

3931 The parameter list is invalid.

6-62 CA-IDMS DML Reference — PL/I

6.33 ENQUEUE (DC/UCF)

Status code Meaning

0000 All requested resources are available.

3908 At least one of the tested resources is already owned by another
task.

3909 At least one of the tested resources is not yet owned by another
task and is available to the issuing task.

3931 The parameter list is invalid.

Chapter 6. Data Manipulation Language Statements 6-63

6.34 ERASE

 6.34 ERASE

The ERASE statement performs the following functions:

■ Disconnects the specified record from all set occurrences in which it participates
as a member and logically or physically deletes the record from the database

■ Optionally erases all records that are mandatory members of set occurrences
owned by the specified record

■ Optionally disconnects or erases all records that are optional members of set
occurrences owned by the specified record

ERASE is a two-step procedure that first cancels the existing membership of the
named record in specific set occurrences and then releases for reuse the space occupied
by the named record and its db-key. Erased records are unavailable for further
processing by any DML statement.

Before executing the ERASE statement, satisfy the following conditions:

■ Ready all areas that are affected either implicitly or explicitly in one of the update
usage modes (see 6.61, “READY” on page 6-164 later in this chapter).

■ Include and ready in an update usage mode all sets in which the specified record
participates as a member.

■ Include in the subschema all sets in which the specified record participates as
owner either directly or indirectly (for example, as owner of a set with a member
that is owner of another set) and all member record types in those sets.

■ Include in the subschema all records that participate either implicitly or explicitly
as owners.

■ Establish the specified record as current of run unit.

Currency: Following successful execution of an ERASE statement, currency is
nullified for all record types involved in the erase both explicitly and implicitly. Run
unit and area currency remain unchanged. Next, prior, and owner currencies are
preserved for sets from which the last record occurrence was erased. These currencies
enable you to retrieve the next or prior records within the area or the next, prior, or
owner records within the set in which the erased record participated. An attempt to
retrieve erased records results in an error condition.

 Syntax

��─── ERASE RECORD (record-name) ─┬─────────────┬─ ; ─────────────────────────��

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

 Parameters

6-64 CA-IDMS DML Reference — PL/I

6.34 ERASE

RECORD (record-name)
Names the record type to be erased. Record-name must be a record included in
the subschema. The current of record-name must be current of run unit. Unless
the PERMANENT, SELECTIVE, or ALL qualifier follows, an error condition
results if the named record is the owner of any nonempty set occurrences.

Native VSAM users: ERASE RECORD (record-name) is the only form of the
ERASE statement valid for records in a native VSAM key-sequenced data
sets (KSDS) or relative-record data sets (RRDS); the ERASE statement is
not valid for a native VSAM entry-sequenced data sets (ESDS).

PERMANENT
Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records are disconnected. If any of the
erased mandatory members are themselves the owner of any set occurrences, the
ERASE statement is executed on such records as if they were directly the object
record of an ERASE PERMANENT statement (that is, all mandatory members of
such sets are also erased). This process continues until all direct and indirect
members have been processed.

SELECTIVE
Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records are erased if they do not
currently participate as members in other set occurrences. All erased member
records that are themselves the owners of any set occurrences are treated as if they
were the object of an ERASE SELECTIVE statement.

ALL
Erases the specified record and all mandatory and optional member record
occurrences owned by the specified record. All erased member records that are
themselves the owners of any set occurrences are treated as if they were the object
record of an ERASE ALL statement.

Example: The following four figures illustrate use of the three parameters of the
ERASE statement. Note that the outcome of the ERASE statement varies based on the
qualifier specified (PERMANENT, SELECTIVE, or ALL). Although all three
qualifiers cause all mandatory members owned by the specified record to be erased,
they differ in their effect on optional members.

Chapter 6. Data Manipulation Language Statements 6-65

6.34 ERASE

6-66 CA-IDMS DML Reference — PL/I

6.34 ERASE

The following figure shows the effect each of the parameters has on currency.

Chapter 6. Data Manipulation Language Statements 6-67

6.34 ERASE

 ┌──┐

│ CURRENCIES: RUN UNIT, RECORD, SET, AREA │

 ├─────────┬─────────┬──────┬────────┬────────┬─────────┬─────────┬────────┬────────┬─────────┤

│ RUN │ DEPT │ TCHR │ SUBJ │ CLASS │ DEPT_ │ DEPT_ │ TCHR_ │ SUBJ_ │ SCHOOL_ │

│ UNIT │ │ │ │ │ TCHR │ SUBJ │ CLASS │ CLASS │ REGION │

 ├─────────┴─────────┴──────┴────────┴────────┴─────────┴─────────┴────────┴────────┴─────────┤

┌─────────────┼─────────┬─────────┬──────┬────────┬────────┬─────────┬─────────┬────────┬────────┬─────────┤

│ ESTABLISHED │ FOREIGN │ FOREIGN │ │ FRENCH │ CHI I. │ FOREIGN │ FOREIGN │ CHI I. │ FRENCH │ FOREIGN │

│ CURRENCIES │ LANG. │ LANG. │ │ │ │ LANG. │ LANG. │ │ │ LANG. │

├─────────────┼─────────┼─────────┼──────┼────────┼────────┼─────────┼─────────┼────────┼────────┼─────────┤

│ ERASE DEPT │ FOREIGN │ NULL │ │ NULL │ NULL │ NP │ NULL │ NP │ NULL │ FOREIGN │

│ PERMANENT │ LANG. │ │ │ │ │ │ │ │ │ LANG. │

├─────────────┴─────────┴─────────┴──────┴────────┴────────┴─────────┴─────────┴────────┴────────┴─────────┤

├─────────────┬─────────┬─────────┬──────┬────────┬────────┬─────────┬─────────┬────────┬────────┬─────────┤

│ ESTABLISHED │ WON HAN │ FOREIGN │ WON │ │ CHI I. │ WON │ FOREIGN │ WON │ CHI I. │ WON │

│ CURRENCIES │ │ LANG. │ HAN │ │ │ HAN │ LANG. │ HAN │ │ HAN │

├─────────────┼─────────┼─────────┼──────┼────────┼────────┼─────────┼─────────┼────────┼────────┼─────────┤

│ ERASE TCHR │ WON HAN │ FOREIGN │ NULL │ │ CHI I. │ NP │ FOREIGN │ NP │ CHI I. │ WON │

│ SELECTIVE │ │ LANG. │ │ │ │ │ LANG. │ │ │ HAN │

├─────────────┴─────────┴─────────┴──────┴────────┴────────┴─────────┴─────────┴────────┴────────┴─────────┤

├─────────────┬─────────┬─────────┬──────┬────────┬────────┬─────────┬─────────┬────────┬────────┬─────────┤

│ ESTABLISHED │ WON HAN │ │ WON │ FRENCH │ │ WON │ FRENCH │ WON │ FRENCH │ WON │

│ CURRENCIES │ │ │ HAN │ │ │ HAN │ │ HAN │ │ HAN │

├─────────────┼─────────┼─────────┼──────┼────────┼────────┼─────────┼─────────┼────────┼────────┼─────────┤

│ ERASE TCHR │ WON HAN │ │ NULL │ FRENCH │ NULL │ NP │ FRENCH │ NP │ NP │ WON │

│ ALL │ │ │ │ │ │ │ │ │ │ HAN │

└─────────────┴─────────┴─────────┴──────┴────────┴────────┴─────────┴─────────┴────────┴────────┴─────────┘

Status codes: Upon completion of the ERASE function, the ERROR_STATUS
field in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0208 The object record is not in the specified subschema.

0209 The named record's area has not been readied in one of the three
update usage modes.

0210 The subschema specifies an access restriction that prohibits use of
the ERASE statement.

0213 A current record of run unit has either not been established or has
been nullified by a previous ERASE statement.

0217 A db-key has been encountered that contains a longterm permanent
lock.

0220 The current record of run unit is not the same record type as the
named record.

0221 An area other than the area of the specified record has been readied
with an incorrect usage mode.

0225 Currency has not been established. Only OBTAIN statements
update index set currencies.

0226 A broken chain has been encountered in the process of executing
an ERASE ALL, PERMANENT, or SELECTIVE.

6-68 CA-IDMS DML Reference — PL/I

6.34 ERASE

Status code Meaning

0230 An attempt has been made to erase the owner record of a nonempty
set.

0233 Either erasure of the record occurrence is not allowed in this
subschema or all sets in which the record participates have not
been included in the subschema.

0260 A record occurrence has been encountered whose type is
inconsistent with the set named in the ERROR_SET field of the
IDMS-DB communications block; probable causes are a broken
chain or improper database description.

0261 No record can be found for a pointer db-key. The probable cause
is a broken chain.

Chapter 6. Data Manipulation Language Statements 6-69

6.35 ERASE (LRF)

 6.35 ERASE (LRF)

The ERASE statement deletes a logical-record occurrence. The ERASE statement
does not necessarily result in the deletion of all or any of the database records used to
create the specified logical record. The path selected to service an ERASE
logical-record request performs whatever database access operations the DBA has
specified to service the request. For example, if a DEPARTMENT loses an employee,
the EMP_JOB_LR logical record that contains information about that employee would
be erased. However, only the information about the former employee would be erased
from the database, not all the information about the department; that is, EMPLOYEE
information would be erased, but not DEPARTMENT, JOB, or OFFICE information.

LRF uses field values present in the variable-storage location reserved for the logical
record to update the database. You can specify an alternative storage location from
which LRF is to take field values to make the appropriate updates to the database.

 Syntax:

��─── ERASE RECORD (logical-record-name) ─────────────────────────────────────�

 �─┬─────────────────────────────┬─┬──────────────────────────────┬───────────�

└─ FROM (alt-logical-record) ─┘ └─ WHERE (boolean-expression) ─┘

 �─┬──┬─ ; ─────────────────��

└─ ON LR_STATUS (path-status) imperative-statement ─┘

RECORD (logical-record-name)
Names the logical record to be deleted. Unless the FROM clause (see below) is
included, LRF uses field values present in the variable-storage location reserved
for the logical record to make any necessary updates to the database.
Logical-record-name must specify a logical record defined in the subschema.

FROM (alt-logical-record)
Names an alternative variable-storage location from which LRF is to obtain field
values to perform the appropriate database updates in response to this request.
When erasing a logical record that has been previously retrieved into an
alternative storage location, use the FROM clause to name the same location
specified in the OBTAIN request. If the FROM clause is included in the ERASE
statement, alt-logical-record must identify a record location defined in program
variable storage.

WHERE (boolean-expression)
Specifies the selection criteria to be applied to the specified logical record. For
details on coding this clause, see 6.78, “Logical-record clauses (WHERE and
ON)” on page 6-215 at the end of this chapter.

ON LR_STATUS (path-status) imperative-statement
Specifies the action to be taken if path-status is returned to the LR_STATUS field
in the LRC block. Path-status must be a 1- to 16-character alphanumeric value.
For details on coding this clause, see 6.78, “Logical-record clauses (WHERE and
ON)” on page 6-215 at the end of this chapter.

6-70 CA-IDMS DML Reference — PL/I

6.35 ERASE (LRF)

Example: The following example illustrates a request to erase all occurrences of a
former employee's EMP_INSURANCE_LR logical record. The DBA-designated path
status ALL_ERASED indicates that all occurrences of the EMP_INSURANCE_LR
logical record have been erased.

ERASE RECORD (EMP_INSURANCE_LR)

WHERE (EMP_ID_�415 EQ '�316')

ON LR_STATUS (ALL_ERASED) CALL EMP_INS_DELETION_RPT;

D, M, and F under Coverage in the following figure are physically erased from the
database as a result of the ERASE RECORD (EMP_INSURANCE_LR) statement. As
defined by the DBA, the ERASE EMP_INSURANCE_LR path group logically deletes
all of the specified EMP_INSURANCE_LR occurrences, but physically deletes only
the D, M, and F COVERAGE records.

Chapter 6. Data Manipulation Language Statements 6-71

6.36 FIND/OBTAIN

 6.36 FIND/OBTAIN

The FIND statement locates a record occurrence in the database; the OBTAIN
statement locates a record and moves the data associated with the record to the record
buffers. Because the FIND and OBTAIN command statements have identical formats,
they are discussed together.

Six FIND/OBTAIN formats: The six formats of the FIND/OBTAIN statement are
as follows:

■ FIND/OBTAIN CALC/DUPLICATE accesses a record occurrence by using its
CALC key value.

■ FIND/OBTAIN CURRENT accesses a record occurrence by using established
currencies.

■ FIND/OBTAIN DBKEY accesses a record occurrence by using its database key.

■ FIND/OBTAIN OWNER accesses the owner record of a set occurrence.

■ FIND/OBTAIN WITHIN SET USING SORT KEY accesses a record
occurrence in a sorted set by using its sort-key value.

■ FIND/OBTAIN WITHIN SET/AREA accesses a record occurrence based on its
logical location within a set or on its physical location within an area.

Each format of the FIND/OBTAIN statement is discussed separately in the following
subsections.

SHARED and EXCLUSIVE locks: You can place locks on located record
occurrences by using the KEEP clause of a FIND/OBTAIN statement. The KEEP
clause sets a shared or exclusive lock:

■ KEEP places a shared lock on the located record occurrence. Other concurrently
executing run units can access but not update the locked record.

■ KEEP EXCLUSIVE places an exclusive lock on the located record occurrence.
Other concurrently executing run units can neither access nor update the locked
record.

For more information on record locks, see 6.46, “KEEP” on page 6-116, later in this
chapter.

 6.36.1 FIND/OBTAIN CALC/DUPLICATE

The FIND/OBTAIN CALC/DUPLICATE statement locates a record based on the
value of an element defined as a CALC key in the record. The specified record must
be stored in the database with a location mode of CALC. Before issuing the
FIND/OBTAIN CALC/DUPLICATE statement, you must initialize a field in program
variable storage with the CALC-key value.

6-72 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

You can use the DUPLICATE option to access duplicate records with the same
CALC-key value as the record that is current of record type, provided that a
FIND/OBTAIN CALC statement has previously accessed an occurrence of the same
record type.

Currency: Following successful execution of a FIND/OBTAIN CALC/DUPLICATE
statement, the accessed record becomes the current record of run unit, its record type,
its area, and all sets in which it currently participates as member or owner.

 Syntax:

��──┬─ FIND ───┬──┬────────────────────────┬───┬─┬─ CALC ─┬──┬────────────────�

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ │ └─ ANY ──┘ │

└─ EXCLUSIVE ─┘ └─ DUPLICATE ─┘

 �──── RECORD (record-name); ───��

 Parameters

FIND/OBTAIN CALC/DUPLICATE RECORD (record-name)
Locates the record specified by record-name based on its CALC-key value:

CALC/ANY
Locates the first or only occurrence of the designated record type whose
CALC key matches the value of the CALC data item in program variable
storage. CALC and ANY are synonyms.

DUPLICATE
Locates the next record with the same CALC key value as the current of
record type. Use of the DUPLICATE option requires prior selection of an
occurrence of the same record type with the CALC option. If the value of the
CALC key in variable storage is not equal to the CALC-key field of the
current of record type, an error status of 0332 is returned.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed
record.

Example: To retrieve an occurrence of the EMPLOYEE record by using the
FIND/OBTAIN CALC/DUPLICATE statement, you must first initialize the
variable-storage field that contains the CALC-control element. The following
statements initialize the CALC field EMP_ID_0415 and retrieve an occurrence of the
EMPLOYEE record:

EMP_ID_�415 = EMP_ID_IN;

OBTAIN CALC RECORD (EMPLOYEE);

Status codes: Upon completion of the FIND/OBTAIN CALC/DUPLICATE
function, the ERROR_STATUS field in the IDMS-DB communications block indicates
the outcome of the operation:

Chapter 6. Data Manipulation Language Statements 6-73

6.36 FIND/OBTAIN

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For further information, see
6.46, “KEEP” on page 6-116 later in this chapter. The major code 03 is returned if an
error occurs during FIND/OBTAIN processing.

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 A successful FIND/OBTAIN CALC has not yet been executed
(applies to the DUPLICATE option only).

0308 The named record is not in the subschema. The program probably
invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0318 The record has not been bound.

0326 The record cannot be found or no more duplicates exist for the
named record.

0331 The retrieval statement format conflicts with the record's location
mode.

0332 The value of the CALC data item in program variable storage does
not equal the value of the CALC data item in the current record
(applies to the DUPLICATE option only).

0364 The CALC-control element has not been described correctly either
in the program or in the subschema.

0370 A database file will not open properly.

 6.36.2 FIND/OBTAIN CURRENT

The FIND/OBTAIN CURRENT statement locates the record that is current of its
record type, set, or area. This form of the FIND/OBTAIN statement is an efficient
means of establishing the appropriate record as current of run unit before executing a
DML statement that utilizes run-unit currency (for example, ACCEPT, IF, GET,
MODIFY, ERASE).

Currency: Following successful execution of a FIND/OBTAIN CURRENT
statement, the accessed record is current of run unit, its record type, its area, and all
sets in which it currently participates as member or owner.

 Syntax:

6-74 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

��─┬─ FIND ───┬─┬────────────────────────┬─ CURRENT ──────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �─┬────────────────────────┬─ ; ───��

├─ RECORD (record-name) ─┤

├─ SET (set-name) ───────┤

└─ AREA (area-name) ─────┘

 Parameters

FIND/OBTAIN CURRENT
Locates the current record occurrence of a specified record type, set, or area.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed
record.

RECORD (record-name)/SET (set-name)/AREA (area-name)
Specifies that the current record of the named record type, set, or area is to be
accessed.

Example: The following figure illustrates use of the FIND/OBTAIN CURRENT
statement to establish the proper record as current of run unit before the record is
modified.

Assume that you enter the database on DEPARTMENT 5100 by using CALC
retrieval. You examine EMPLOYEE 466 by using within set retrieval and obtain
further information from its owner OFFICE record (OFFICE 8). OFFICE 8 becomes
current of run unit. Before modifying EMPLOYEE 466, you must issue the FIND
CURRENT statement to reestablish EMPLOYEE 466 as current of run unit.

Chapter 6. Data Manipulation Language Statements 6-75

6.36 FIND/OBTAIN

�� For a complete description of the MODIFY statement and its use, see 6.53,
“MODIFY RECORD” on page 6-146, later in this chapter.

Status codes: Upon completion of the FIND/OBTAIN CURRENT function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named record, set, or
area.

0308 The named record or set is not in the subschema. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0313 A current record of run unit either has not been established or has
been nullified by a previous ERASE statement.

0323 The specified area name has not been included in the subschema
invoked.

6-76 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For further information, see
6.46, “KEEP” on page 6-116, later in this chapter. The major code 03 is returned if
an error occurs during FIND/OBTAIN processing.

 6.36.3 FIND/OBTAIN DBKEY

The FIND/OBTAIN DBKEY statement locates a record occurrence directly by using a
database key that has been stored previously by the program. The DML ACCEPT
statement, discussed earlier in this chapter, or the PL/I assignment statement can be
used to save a db-key. Any record in the program's subschema can be accessed
directly in this manner, regardless of its location mode.

Native VSAM users: This statement is not valid for accessing data records in a
native VSAM key-sequenced data set (KSDS).

Currency: After successful execution of a FIND/OBTAIN DBKEY statement, the
accessed record becomes the current record of run unit, its record type, its area, and all
sets in which it currently participates as member or owner. In addition, the
RECORD_NAME field of the IDMS-DB communications block is updated with the
name of the accessed record.

Note that currency is not used to determine the specified record of the FIND/OBTAIN
DBKEY statement; the record is identified by its db-key and, optionally, by its record
type.

 Syntax

��─┬─ FIND ───┬─┬────────────────────────┬───────────────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �─┬─ DBKEY (db-key-v) ─┬───────────────────────────┬─┬──────────────────────��

│ └─ PAGE_INFO (page-info-v) ─┘ │

└─┬────────────────────────┬─ DBKEY (db-key-v) ────┘

└─ RECORD (record-name) ─┘

 Parameters

FIND/OBTAIN DBKEY (db-key-v)
Locates a record directly by using a db-key value contained in program variable
storage. (db-key-v) is a FIXED BINARY(31) fullword field that identifies the
location in program variable storage that contains a db-key previously saved by
the program.

If a record name has been specified, (db-key-v) must contain the db-key of an
occurrence of the named record type.

If a record name has not been specified and the subschema includes areas with
different page information values, then:

■ If PAGE_INFO has been specified, (db-key-v) must contain the db-key of an
occurrence of a record type whose page information matches that specified.

Chapter 6. Data Manipulation Language Statements 6-77

6.36 FIND/OBTAIN

■ If PAGE_INFO has not been specified, (db-key-v) must contain the db-key of
an occurrence of a record type whose page information matches that of the
record that is current of run unit.

If a record name has not been specified and all areas in the subschema have the
same page information value, (db-key-v) can contain the db-key of an occurrence
of any record type in the subschema.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed
record.

PAGE_INFO (page-info-v)
Specifies page information that is used to determine the area with which the
db-key is associated. If neither record name nor PAGE_INFO is specified and the
subschema includes areas with different page information values, the page
information associated with the record that is current of rununit is used.

Note: Page information is only used if the subschema includes areas with
different page information values; otherwise, it is ignored.

page-info-v is a field that identifies the location within program variable storage
containing the page information associated with the specified db-key. It may be
defined either as a fullword field or as a group field consisting of two halfwords.

RECORD (record-name)
Optionally identifies the record type of the requested record. If specified,
record-name must name a record that is included in the subschema.

Example: The following statement locates the occurrence of the
HOSPITAL_CLAIM record whose db-key matches the value of a field in program
variable storage called SAVED_KEY:

FIND RECORD (HOSPITAL_CLAIM) DBKEY (SAVED_KEY);

The located record becomes current of run unit, current of the HOSPITAL_CLAIM
record type, current of the INS_DEMO_REGION area, and current of the
COVERAGE_CLAIMS set.

Status codes: Upon completion of the FIND/OBTAIN DBKEY function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0302 The db-key is inconsistent with the area in which the record is
stored. Either the db-key has not been initialized properly or the
record name is incorrect.

6-78 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For further information, see
6.46, “KEEP” on page 6-116, later in this chapter. The major code 03 is returned if
an error occurs during FIND/OBTAIN processing.

Status code Meaning

0308 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0326 The record cannot be found; record occurrence not correct type

0370 A database file will not open properly.

0371 The requested page cannot be found in the DMCL.

 6.36.4 FIND/OBTAIN OWNER

The FIND/OBTAIN OWNER statement locates the owner record of the current
occurrence of a set. This statement can be used to retrieve the owner record of any set
whether or not that set has been assigned owner pointers.

Native VSAM users: The FIND/OBTAIN OWNER statement is not valid since
owner records are not defined in native VSAM data sets.

Currency: In order to execute a FIND/OBTAIN OWNER statement, currency must
be established for the specified set.

Note: When a record declared as an optional or manual member of a set is retrieved,
it is not established as current of set if it is not currently connected to the
specified set. A subsequent attempt to retrieve the owner record will locate
instead the owner of the current record of set. In such cases, you should
determine whether the retrieved record is actually a member in the specified set
before executing the FIND/OBTAIN OWNER statement. The IF MEMBER
statement, explained later in this chapter, can be used for this purpose.

Following successful execution of a FIND/OBTAIN OWNER statement, the accessed
record becomes the current record of run unit, its record type, its area, and all sets in
which it currently participates as member or owner. If the current record of set is the
owner record when the statement is executed, currency within the specified set remains
unchanged.

 Syntax:

��─┬─ FIND ───┬─┬────────────────────────┬─ OWNER SET (set-name); ────────────��

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-79

6.36 FIND/OBTAIN

FIND/OBTAIN OWNER SET (set-name)
Specifies the set whose owner record is to be retrieved. Set-name must be a set
included in the subschema.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed
record.

Example: The following figure illustrates use of the FIND/OBTAIN OWNER
statement to move through the database.

Status codes: Upon completion of the FIND/OBTAIN OWNER function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

6-80 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For further information, see
6.46, “KEEP” on page 6-116, later in this chapter. The major code 03 is returned if
an error occurs during FIND/OBTAIN processing.

Status code Meaning

0301 The area in which the object record participates has not been
readied.

0306 Currency has not been established for the record, set, or area.

0308 The named set is not in the subschema. The program has probably
invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the object record.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0370 A database file will not open properly.

6.36.5 FIND/OBTAIN WITHIN SET USING SORT KEY

The FIND/OBTAIN WITHIN SET USING SORT KEY statement locates a member
record in a sorted set. Sorted sets are ordered in ascending or descending sequence
based on the value of a sort-control element in each member record. The search
begins with either the current of set or the owner of the current of set and always
proceeds through the set in the next direction.

Before issuing this statement, you must initialize the sort-control element in program
variable storage. The record occurrence selected will have a key value equal to the
value of the sort-control element. If more than one record occurrence contains a sort
key equal to the key value in variable storage, the first such record will be selected.

You can use FIND/OBTAIN WITHIN SET USING SORT KEY to access both sorted
chained sets and sorted index sets.

Note: In a batch environment, sorted sets can be processed more efficiently by
sorting the input transactions.

Currency: Following successful execution of a FIND/OBTAIN WITHIN SET
USING SORT KEY statement, the accessed record becomes current of run unit, its
record type, its area, and all sets in which it currently participates as member or
owner. If a member record with the requested sort-key value is not found, the current
of set is nullified but the next of set and prior of set are maintained. The next of set is
the member record with the next higher sort-key value (or next lower for descending
sets) than the requested value; the prior of set is the member record with the next
lower value (or higher for descending sets) than requested. Because these currencies

Chapter 6. Data Manipulation Language Statements 6-81

6.36 FIND/OBTAIN

are maintained, the program can walk the set to do a generic search on the sort-key
value.

 Syntax:

��─┬─ FIND ───┬─┬────────────────────────┬─ RECORD (record-name) ─────────────�

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �── SET (set-name) ─┬───────────┬─ USING (sort-field-name); ─────────────────��

└─ CURRENT ─┘

 Parameters

FIND/OBTAIN RECORD (record-name) SET (set-name)
Specifies the record type and sorted set name. The search begins with the owner
of the current record of the specified set.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed
record.

CURRENT
Indicates that the search begins with the currencies already established for the
specified set.

If the key value for the record that is current of set is higher than the key value of
the requested record (assuming ascending set order), a NOT FOUND condition
results. In a descending set order, if the key value for the record that is current of
set is lower than the key value of the requested record, a NOT FOUND condition
results.

USING (sort-field-name)
Specifies the sort-control element to be used in searching the sorted set.
Sort-field-name is either the name of the sort-control element in the record or the
symbolic name of a field in variable storage that contains the value of the
sort-control element.

Example: The following example illustrates the use of a FIND/OBTAIN WITHIN
SET USING SORT KEY statement. Assume that the SKILL_NAME_NDX set is
ordered in ascending sequence based on the value stored in SKILL_NAME_0455 in
each SKILL record occurrence. Retrieval of a SKILL record with a skill name equal
to PL/I is accomplished by coding the following statements:

SKILL_NAME_�455 = 'PL/I';

FIND RECORD (SKILL) SET (SKILL_NAME_NDX)

 USING (SKILL_NAME_�455);

Status codes: Upon completion of the FIND/OBTAIN WITHIN SET USING
SORT KEY function, the ERROR_STATUS field in the IDMS-DB communications
block indicates the outcome of the operation:

6-82 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For further information, see
6.46, “KEEP” on page 6-116, later in this chapter. The major code 03 is returned if
an error occurs during FIND/OBTAIN processing.

Status code Meaning

0000 The request has been serviced successfully.

0057 A retrieval-only run unit has detected an inconsistency in an index
that should cause an 1143 abend, but optional APAR bit 216 has
been turned on.

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named set.

0308 Either the named record or set is not in the subschema or the
named record is not a member of the named set. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0326 The record cannot be found.

0331 The retrieval statement format conflicts with the record's location
mode.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0370 A database file will not open properly.

6.36.6 FIND/OBTAIN WITHIN SET/AREA

The FIND/OBTAIN WITHIN SET/AREA statement locates records either logically,
based on set relationships, or physically, based on database location. The formats of
this statement allow you either to access serially each record in a set or area or to
select specific occurrences of a given record type within the set or area.

Selecting from a set: The following rules apply to the selection of member
records within a set:

■ The set occurrence used as the basis for the operation is determined by the current
record of the specified set. Set currency must be established before attempting to
access records within a set.

■ The next or prior record within a set is the subsequent or previous record relative
to the current record of the named set in the logical order of the set. The prior
record in a set can be retrieved only if the set has been assigned prior pointers.

Chapter 6. Data Manipulation Language Statements 6-83

6.36 FIND/OBTAIN

■ The first or last record within a set is the first or last member occurrence in terms
of the logical order of the set. The selected record is the same as would be
selected if the current of set were the owner record and the next or prior record
had been requested. The last record in a set can be retrieved only if the set has
prior pointers.

■ The nth occurrence of a record within a set can be retrieved by specifying a
sequence number that identifies the position of the record in the set. The DBMS
begins its search with the owner of the current of set for the specified set and
continues until it locates the nth record or encounters an end-of-set condition. If
the specified sequence number is negative, the search proceeds in the prior
direction within the set. A negative sequence number can be used only if the set
has prior pointers; a sequence number of 0 produces an error status of 0304.

■ When an end-of-set condition occurs, the owner record occurrence of the set
becomes the current record of run unit, current of its record type, current of its
area, and current record of only the set involved in this operation. Currency of
other sets in which the specified record participates as owner or member remains
unaffected.

Note: If OBTAIN has been specified, the contents of the owner record are not
moved to program variable storage (that is, OBTAIN under these
circumstances is treated as a FIND).

Native VSAM users: When an end-of-set condition occurs, all currencies remain
unchanged.

Selecting from an area: The following rules apply to the selection of records
within an area:

■ The first record occurrence within an area is the one with the lowest database key;
the last record is the one with the highest database key.

■ The next record within an area is the one with the next higher database key
relative to the current record of the named area; the prior record is the one with
the next lower database key relative to the current of area.

■ The first or last or nth record in an area must be retrieved to establish the correct
starting position before next or prior records are requested.

Currency: Following successful execution of a FIND/OBTAIN WITHIN
SET/AREA statement, the accessed record becomes the current record of run unit, its
record type, its area, and all sets in which it currently participates as member or
owner.

When an end-of-set condition occurs selecting records within a set, the owner record
occurrence of the set becomes the current record of run unit, its record type, its area,
and only the set involved in this operation. Currency of other sets in which the
specified record participates as owner or member remains unaffected.

 Syntax:

6-84 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

��─┬─ FIND ───┬─┬────────────────────────┬─┬─ NEXT ──────────────────┬────────�

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ ├─ FIRST ─────────────────┤

└─ EXCLUSIVE ─┘ ├─ LAST ──────────────────┤

├─ PRIOR ─────────────────┤

└─ NTH (sequence-number) ─┘

 �─┬────────────────────────┬─┬─ SET (set-name) ───┬─ ; ──────────────────────��

└─ RECORD (record-name) ─┘ └─ AREA (area-name) ─┘

 Parameters

FIND/OBTAIN SET (set-name)/AREA (area-name)
Locates a record based on its location within a set or area. Set-name/area-name
specifies the set or area that will be searched and must identify a set or area
included in the subschema.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed
record.

NEXT
Accesses the next record in the specified set or area relative to the current record.

FIRST
Accesses the first record in the specified set or area.

LAST
Accesses the last record in the specified set or area. The specified set must have
prior pointers.

PRIOR
Accesses the prior record in the specified set or area relative to the current record.
The specified set must have prior pointers.

NTH (sequence-number)
Accesses the nth record in the specified set or area. Sequence-number must either
be a positive or negative number or any numeric field that contains a nonzero
value used by the DBMS in searching for the nth record occurrence. If sequence
is negative, the specified set must have prior pointers.

Native VSAM users: FIRST, LAST, and NTH (sequence) options are not valid
for a native VSAM KSDS with spanned records.

RECORD (record-name)
Specifies that within a set or area, only occurrences of the named record type will
be accessed. Record-name must be defined as a member of the specified set or
contained within the specified area.

Example: The following figure illustrates the retrieval of records in an occurrence of
the DEPT_EMPLOYEE set.

The FIND CALC statement establishes currency in the DEPT_EMPLOYEE set.
Member EMPLOYEE records are then retrieved by a series of OBTAIN WITHIN SET
statements. EMPLOYEE 106 is the last record in the set and the next OBTAIN

Chapter 6. Data Manipulation Language Statements 6-85

6.36 FIND/OBTAIN

statement returns an end-of-set condition, positioning run-unit currency at the owner of
the set, DEPARTMENT 2000.

The following figure illustrates special considerations relating to the retrieval of
records in an area that contains multiple record types.

A sweep of the EMP_DEMO_REGION is performed, retrieving sequentially each
EMPLOYEE record and all records in the associated EMPLOYEE_EXPERTISE set.
The first command retrieves EMPLOYEE 119. Subsequent OBTAIN WITHIN SET
statements retrieve the associated EXPERTISE records and establish currency on
EXPERTISE 03. The FIND CURRENT statement is used to reestablish the proper
position before retrieving EMPLOYEE 48. If FIND CURRENT EMPLOYEE is not
specified, an attempt to retrieve the next EMPLOYEE record in the area would return
EMPLOYEE 23.

6-86 CA-IDMS DML Reference — PL/I

6.36 FIND/OBTAIN

Status codes: Upon completion of the FIND/OBTAIN WITHIN SET/AREA
function, the ERROR_STATUS field in the IDMS-DB communications block indicates
the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-87

6.36 FIND/OBTAIN

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For further information, see
6.46, “KEEP” on page 6-116, later in this chapter. The major code 03 is returned if
an error occurs during FIND/OBTAIN processing.

Status code Meaning

0057 A retrieval-only run unit has detected an inconsistency in an index
that should cause an 1143 abend, but optional APAR bit 216 has
been turned on.

0301 The area in which the named record participates has not been
readied.

0304 Either a sequence number of 0 or a variable field that contains a
value of 0 was specified for the named record.

0306 Currency has not been established for the named record, set, or
area.

0307 Either the end of the set or the area was reached or the set is
empty.

0308 Either the named record or set is not in the subschema or the
named record is not defined as a member of the named set. The
program has probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0323 Either the area name specified has not been included in the
subschema invoked or the record name specified has not been
defined within the named area.

0326 The record cannot be found.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0370 A database file will not open properly.

6-88 CA-IDMS DML Reference — PL/I

6.37 FINISH

 6.37 FINISH

The FINISH statement relinquishes control over all database areas associated with a
program or task and optionally establishes an end-of-task checkpoint for scratch and
queue areas associated with a task. FINISH writes statistical information for the
database operations performed during run unit execution to the journal file; it also
defines and logs the end checkpoint for a recovery unit.

You can use the FINISH statement to change area usage modes defined by previously
issued READY statements.

You can use the FINISH statement in both navigational and Logical Record Facility
(LRF) environments.

Currency: Following the successful execution of a FINISH request, all currencies
are set to null; the issuing program or task cannot perform database access without
executing another BIND/READY sequence.

 Syntax

��─── FINISH ─┬────────┬─ ; ──��

└─ TASK ─┘

 Parameters

FINISH
Releases all data areas held by the issuing run unit and writes an end-of-job
checkpoint and statistical information to the journal file. No further DML
retrieval or modification statements can be executed until the appropriate binds
have been issued and the necessary areas have been readied again.

TASK
Releases all data areas held by all run units executing under the issuing task.
FINISH TASK is CA-IDMS/DC only.

Example: The following statement illustrates the use of the FINISH statement:

 FINISH;

Status codes: Upon completion of the FINISH function, the ERROR_STATUS
field in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5031 The specified request is invalid; the program may contain a logic
error.

5096 There are too many run units currently active; check the log for
details.

Chapter 6. Data Manipulation Language Statements 6-89

6.37 FINISH

Status code Meaning

5097 An invalid status has been received from DBIO/DBMS; check the
log for details.

6-90 CA-IDMS DML Reference — PL/I

6.38 FREE STORAGE (DC/UCF)

6.38 FREE STORAGE (DC/UCF)

The FREE STORAGE statement instructs the system to release all or a part of a
variable-storage area. The storage to be released must have been acquired by means
of a GET STORAGE request in the issuing task or by another task running on the
same terminal as the issuing task. A partial release is valid only for user storage;
shared storage must be freed in its entirety.

 Syntax

��─── FREE STORAGE ───�

 �─┬─ STGID (storage-id) ──┬─ ; ──��

└─ FOR (storage-location) ─┬──────────────────────────────────────┬─┘

└─ FROM (start-free-storage-location) ─┘

 Parameters

STGID (storage-id)
Specifies the 4-character identifier of the variable storage area to be released.
Storage-id is either the symbolic name of a user-defined field that contains the ID
or the ID itself enclosed in single quotation marks.

FOR (storage-location)
Specifies the variable-storage entry of the storage area to be released.

FROM (start-free-storage-location)
Releases a portion of the variable-storage area defined as user storage.
Start-free-storage-location is the symbolic name of a user-defined field that
contains the starting point of the storage area to be released. The system releases
storage from the specified location to the end of the storage area.

Example: The following example releases the storage area identified as 09PA:

FREE STORAGE STGID ('�9PA');

Status codes: Upon completion of the FREE STORAGE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3213 The requested storage ID cannot be found.

3232 The derived length of the variable-storage area is zero or negative.

Chapter 6. Data Manipulation Language Statements 6-91

6.39 GET

 6.39 GET

The GET statement transfers the contents of a specified record occurrence from the
record buffer into program variable storage. Elements in the specified record are
moved to their respective locations in variable storage according to the subschema
view of the record. The transferred elements will appear in storage at the location to
which the record has been bound (for further details, see 6.16, “BIND RECORD” on
page 6-34 earlier in this chapter).

Currency: The GET statement operates only on the record that is current of run
unit. Following successful execution of a GET statement, the accessed record is
current of run unit, its record type, its area, and all sets in which it participates as
member or owner.

 Syntax:

��─── GET ─┬────────────────────────┬─ ; ─────────────────────────────────────��

└─ RECORD (record-name) ─┘

 Parameter

RECORD (record-name)
Optionally specifies the record type of the current of run unit. If this optional
clause is used, the current of run unit must be an occurrence of the named record
type.

Example: The following statement moves the record that is current of run unit (in
this case, the OFFICE record) from the record buffer into program variable storage:

GET RECORD (OFFICE);

Status codes: Upon completion of the GET function, the ERROR_STATUS field
in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0506 Currency has not been established.

0508 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

0510 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0513 A current record of run unit either has not been established or has
been nullified by a previous ERASE statement.

0518 The record has not been bound.

0520 The current record is not the same type as the named record.

6-92 CA-IDMS DML Reference — PL/I

6.39 GET

Status code Meaning

0526 The requested record has been erased.

0555 An invalid length has been returned for a variable-length record.

Chapter 6. Data Manipulation Language Statements 6-93

6.40 GET QUEUE (DC/UCF)

6.40 GET QUEUE (DC/UCF)

The GET QUEUE statement retrieves a queue record and places it in a storage area
associated with the issuing program. If the queue record is larger than the designated
storage area, the record is truncated. The system automatically deletes the retrieved
record from the queue unless the GET QUEUE statement explicitly keeps the record in
the queue.

 Syntax

��─── GET QUEUE ─┬─────────────────┬─┬───────────────────────────────┬────────�

└─ ID (queue-id) ─┘ ├─ NEXT ← ──────────────────────┤

├─ FIRST ───────────────────────┤

├─ LAST ────────────────────────┤

├─ PRIOR ───────────────────────┤

├─ SEQUENCE (sequence-number) ──┤

└─ RECORD ID (queue-record-id) ─┘

 �─┬────────────┬─┬──────────┬─┬────────────┬─────────────────────────────────�

├─ DELETE ← ─┤ ├─ LOCK ← ─┤ ├─ WAIT ─────┤

└─ KEEP ─────┘ └─ NOLOCK ─┘ └─ NOWAIT ← ─┘

 �─── INTO (return-queue-data-location) ──────────────────────────────────────�

 �─┬─ TO (end-queue-data-location) ───────┬───────────────────────────────────�

└─ MAX LENGTH (queue-data-max-length) ─┘

 �─┬───┬─ ; ────────────────────��

└─ RETURN LENGTH INTO (queue-data-actual-length) ─┘

 Parameters

ID (queue-id)
Specifies the 1- to 16-character ID of the queue associated with the record to be
retrieved. Queue-id is either the symbolic name of a user-defined field that
contains the ID, or the ID itself enclosed in single quotation marks. If the queue
ID is not specified, a null ID of 16 blanks is assumed.

NEXT/FIRST/LAST/PRIOR/SEQUENCE (sequence)/RECORD
ID(queue-record-id)
Specifies the queue record to be retrieved:

NEXT
Retrieves the next record in the queue. If currency has not been established,
NEXT is equivalent to FIRST. NEXT is the default.

FIRST
Retrieves the first record in the queue.

LAST
Retrieves the last record in the queue.

PRIOR
Retrieves the prior record in the queue. If currency has not been established,
PRIOR is equivalent to LAST.

6-94 CA-IDMS DML Reference — PL/I

6.40 GET QUEUE (DC/UCF)

SEQUENCE (sequence)
Retrieves the queue record identified by sequence. Sequence is either the
symbolic name of a user-defined field that contains the sequence number of
the record, or the sequence number itself expressed as a numeric constant.

RECORD ID (queue-record-id)
Retrieves the record identified by queue-record-id. Queue-record-id is the
symbolic name of the FIXED BINARY(31) field that contains the queue
record ID returned by the PUT QUEUE function.

DELETE/KEEP
Specifies whether the queue record will be deleted from the queue after it is
passed to the requesting program:

DELETE
Deletes the record from the queue. Note that if DELETE is specified and the
record has been truncated, the truncated data is lost. DELETE is the default.

KEEP
Keeps the record in the queue.

LOCK/NOLOCK
Specifies whether the system is to retain a lock on the current queue record:

LOCK
Retains the lock on the current queue record until either a COMMIT TASK
command is issued or the issuing task terminates. While a queue record is
locked, no other task can access that record (regardless of its position in the
queue) until the lock has been released. LOCK is the default.

NOLOCK
Releases the lock on the current queue record following the execution of a
subsequent queue I/O request.

WAIT/NOWAIT
Specifies whether the issuing task is to suspend execution if the requested record
cannot be found in the queue:

WAIT
Suspends task execution until the requested queue exists.

NOWAIT
Continues task execution in the event of a nonexistent queue. An
ERROR_STATUS value of 4405 indicates that the requested queue record
cannot be found. NOWAIT is the default.

INTO (return-queue-data-location)
Indicates the program variable-storage entry of the data area reserved for the
requested queue record. Return-queue-data-location is the symbolic name of a
user-defined field. The length of the data area is determined by one of the
following specifications:

TO (end-queue-data-location)
Indicates the end of the program variable-storage entry reserved for the
requested queue record and is specified following the last data-item entry in

Chapter 6. Data Manipulation Language Statements 6-95

6.40 GET QUEUE (DC/UCF)

return-queue-data-location. End-queue-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the requested queue record.

MAX LENGTH (queue-data-max-length)
Explicitly defines the length of the data area reserved for the requested queue
record. Queue-data-max-length is either the symbolic name of the
user-defined field that contains the length of the queue record's data, or the
length itself expressed as a numeric constant.

RETURN LENGTH INTO (queue-data-actual-length)
Specifies the location to which the system will return the actual length of the
retrieved queue record. Queue-data-actual-length is the symbolic name of a
user-defined 4-byte field. If the record has been truncated, the value returned to
this field is the actual length of the queue record before truncation.

Example: The following example retrieves the first record in the RES_Q queue,
return it to the PEND_RES field, and keep the record in the queue:

 GET QUEUE

 ID ('RES_Q')

 FIRST

 KEEP

INTO (PEND_RES) MAX LENGTH (125);

Status codes: Upon completion of the GET QUEUE function, the
ERROR_STATUS field of the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4404 The requested queue header record cannot be found.

4405 The requested queue record cannot be found.

4407 An I/O error has occurred during processing.

4419 The program storage area specified for return of the queue record is
too small; the returned record has been truncated as appropriate to
fit the available space.

4431 The parameter list is invalid. In DC_BATCH, this code signifies
that the specified record length has exceeded the maximum length
based on the packet size.

4432 The derived length of the queue record data area is negative.

6-96 CA-IDMS DML Reference — PL/I

6.41 GET SCRATCH (DC/UCF)

6.41 GET SCRATCH (DC/UCF)

The GET SCRATCH statement obtains a scratch record and places it in a storage area
associated with the issuing program. The storage area must already be allocated to the
requesting task; no implicit GET STORAGE function is performed during the GET
SCRATCH operation. If the scratch record is larger than the designated storage area,
data is truncated.

 Syntax

��─── GET SCRATCH ─┬─────────────────────────────┬────────────────────────────�

└─ AREA ID (scratch-area-id) ─┘

 �─┬─────────────────────────────────┬─┬────────────┬─────────────────────────�

├─ NEXT ← ────────────────────────┤ ├─ DELETE ← ─┤

├─ FIRST ─────────────────────────┤ └─ KEEP ─────┘

├─ LAST ──────────────────────────┤

├─ CURRENT ───────────────────────┤

├─ PRIOR ─────────────────────────┤

└─ RECORD ID (scratch-record-id) ─┘

 �─── INTO (return-scratch-data-location) ────────────────────────────────────�

 �─┬─ TO (end-scratch-data-location) ───────┬─────────────────────────────────�

└─ MAX LENGTH (scratch-data-max-length) ─┘

 �─┬───┬─ ; ──────────────────��

└─ RETURN LENGTH INTO (scratch-data-actual-length) ─┘

 Parameters

AREA ID (scratch-area-id)
Identifies the scratch area associated with the record being retrieved.
Scratch-area-id is either the symbolic name of a user-defined field that contains
the 1- to 8-character scratch area ID or the ID itself enclosed in single quotation
marks. If AREA ID is not specified, an area ID of eight blanks is assumed.

NEXT/FIRST/LAST/CURRENT/PRIOR/RECORD ID (scratch-record-id)
Specifies the scratch record to be retrieved:

NEXT
Retrieves the next record in the scratch area. NEXT is the default.

FIRST
Retrieves the first record in the scratch area.

LAST
Retrieves the last record in the scratch area.

CURRENT
Retrieves the current record in the scratch area; the current record is the
record most recently referenced by another scratch function.

PRIOR
Retrieves the prior record in the scratch area.

Chapter 6. Data Manipulation Language Statements 6-97

6.41 GET SCRATCH (DC/UCF)

RECORD ID (scratch-record-id)
Retrieves the specified scratch record. Scratch-record-id is the symbolic name
of a user-defined FIXED BINARY(31) field that contains the 4-byte scratch
record ID.

DELETE/KEEP
Specifies whether the scratch record will be deleted from the scratch area after it
is passed to the requesting program:

DELETE
Deletes the record from the scratch area. If DELETE is specified and the
record has been truncated, the truncated data is lost. To maintain currency
following a DELETE request, the system saves the next and prior currencies
of the scratch area. DELETE is the default.

KEEP
Keeps the record in the scratch area.

INTO (return-scratch-data-location)
Specifies the program variable-storage entry of the data area to which the system
will return the scratch record. Return-scratch-data-location is the symbolic name
of a user-defined field. The length of the data area is determined by one of the
following specifications:

TO (end-scratch-data-location)
Indicates the end of the data area to which the system will return the scratch
record and is specified following the last data-item entry in
return-scratch-data-location. End-scratch-data-location is the symbolic name
of either a user-defined dummy byte field or a field that contains a data item
not associated with the scratch record.

MAX LENGTH (scratch-data-max-length)
Specifies the length, in bytes, of the data area associated with the requested
scratch record. Scratch-data-max-length is either the symbolic name of a
program variable-storage field that contains the length, or the length itself
expressed as a numeric constant.

RETURN LENGTH INTO (scratch-data-actual-length)
Specifies the symbolic name of the program variable-storage entry to which the
system will return the actual length of the requested scratch record. If the record
has been truncated, scratch-data-actual-length will contain the length of the full,
untruncated scratch record.

Example: The following statement returns the contents of the current record in the
scratch area to the variable-storage area defined by WORK_PROC_AREA and
END_WORK_PROC_AREA:

 GET SCRATCH

 CURRENT

INTO (WORK_PROC_AREA) TO (END_WORK_PROC_AREA);

Status codes: Upon completion of the GET SCRATCH function, the
ERROR_STATUS field of the IDMS-DC communications block indicates the outcome
of the operation:

6-98 CA-IDMS DML Reference — PL/I

6.41 GET SCRATCH (DC/UCF)

Status code Meaning

0000 The request has been serviced successfully.

4303 The requested scratch area ID cannot be found.

4305 The requested scratch record ID cannot be found.

4307 An I/O error has occurred during processing.

4319 The program storage area specified for return of the scratch record
is too small; the returned record has been truncated to fit the
available space.

4331 The parameter list is invalid.

4332 The derived length of the scratch record is negative.

Chapter 6. Data Manipulation Language Statements 6-99

6.42 GET STORAGE (DC/UCF)

6.42 GET STORAGE (DC/UCF)

The GET STORAGE statement is used either to acquire variable storage from a
system storage pool or to obtain the address of a previously acquired storage area.
Once acquired, the storage is available for use:

■ By the issuing task only (user storage)

■ By subsequent tasks running on the same terminal (user kept storage)

■ By all tasks in the system (shared or shared kept storage)

Storage availability is governed by GET STORAGE parameter specifications.

 Syntax

��─── GET STORAGE FOR (storage-data-location) ────────────────────────────────�

 �─┬─ TO (end-storage-data-location) ─┬───────────────────────────────────────�

└─ LENGTH (storage-data-length) ───┘

 �─── POINTER (storage-data-location-pointer) ─┬──────────┬──┬────────┬───────�

├─ WAIT ← ─┤ └─ KEEP ─┘

└─ NOWAIT ─┘

 �─┬──────────┬─┬──────────┬─┬──────────────────────┬─────────────────────────�

├─ LONG ← ─┤ ├─ USER ← ─┤ └─ STGID (storage-id) ─┘

└─ SHORT ──┘ └─ SHARED ─┘

 �─┬─────────────────────────┬──�

└─ VALUE (initial-value) ─┘

 �─┬───────────────────────────┬─ ; ──��

└─ LOCATION IS ─┬─ ANY ← ─┬─┘

└─ BELOW ─┘

 Parameters

FOR (storage-data-location)
Specifies the variable associated with the storage area being acquired.
Storage-data-location is a user-assigned symbolic name.

TO (end-storage-data-location)
Indicates the end of the data area for which the system will acquire storage. If
this option is specified, storage-data-location must be declared as a PL/I structure
variable. End-storage-data-location is the symbolic name of either a user-defined
dummy byte field or a variable field not associated with the storage area.
End-storage-data-location is specified after the last elementary data-item entry in
the structure.

LENGTH (storage-data-length)
Explicitly defines the length of the data area associated with the requested storage
area. This option is specified in place of TO (end-storage-data-location). If the
LENGTH option is used, then no restrictions are placed on the data type; that is,
storage-data-location does not have to be defined as a PL/I structure variable.

6-100 CA-IDMS DML Reference — PL/I

6.42 GET STORAGE (DC/UCF)

Storage-data-length is a user-assigned fixed binary field containing the storage
length, or the length itself expressed as a numeric constant.

POINTER (storage-data-location-pointer)
Specifies the user-assigned pointer variable associated with storage-data-location.
Storage-data-location-pointer is defined in variable storage with the pointer
attribute. Upon successful completion of the GET STORAGE request, the system
returns the address of the storage area to storage-data-location-pointer.

WAIT/NOWAIT
Specifies whether the issuing task is to wait for sufficient storage in the event that
storage is not immediately available to meet the requirements of the GET
STORAGE request:

WAIT
Specifies that the issuing task will wait until sufficient storage is available in
a storage pool. WAIT is the default.

NOWAIT
Specifies that the issuing task will not wait for storage to become available if
an insufficient storage condition exists. If NOWAIT is specified, the program
should check the ERROR_STATUS field in the IDMS-DC communications
block to determine if the GET STORAGE request has been completed. If the
ERROR_STATUS value is 3202, the program should perform alternative
processing before reissuing the GET STORAGE request.

KEEP
Optionally specifies whether the storage area will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
can be accessed by subsequent tasks; otherwise the storage area cannot be
accessed by subsequent tasks. For a more detailed discussion of the KEEP
parameter, refer to CA-IDMS Navigational DML Programming.

LONG/SHORT
Specifies whether the system should allocate the storage from the bottom or the
top of a storage pool:

LONG
Allocates storage from the bottom of the storage pool. You should specify
LONG when allocating kept storage to be held across pseudo-converses.
LONG is the default.

SHORT
Allocates storage from the top of the storage pool. You should specify
SHORT when allocating small pieces of storage for a short duration.

An incorrect LONG/SHORT specification will not affect normal program
execution; however, it may affect the overall performance of the DC/UCF
system.

USER/SHARED
Specifies whether access to the storage area is to be restricted to the issuing task
or is to be available to all tasks in the system:

Chapter 6. Data Manipulation Language Statements 6-101

6.42 GET STORAGE (DC/UCF)

USER
Specifies that only the issuing task can access the storage area or, if KEEP is
specified, only subsequent tasks executing on the same terminal. USER is the
default.

Note: During system execution, a program defined at system generation with
the NOPROTECT option can access any storage area within the
system, including an area associated exclusively with another task.
Thus, the USER attribute may not protect the storage area being
acquired. However, storage areas can be protected on a system-wide
or program-by-program basis during system generation and by the
modes specified when storage is allocated.

SHARED
Specifies that any task in the system can access and modify the acquired
storage. Each task must establish addressability to the storage area by
explicitly issuing a GET STORAGE request.

STGID (storage-id)
Specifies the 4-character ID associated with the storage area. The STGID
parameter must be specified with GET STORAGE requests for either previously
allocated storage areas or areas to be reallocated. Storage-id is either the symbolic
name of a user-defined field that contains the storage ID, or the ID itself enclosed
in single quotation marks.

The specified storage ID must be unique; although multiple variable-storage areas
(that is, one shared and the others user) can have the same ID, only one such area
can be owned by a given task at a time. To access the IDMS-DC common work
area, specify STGID 'CWA'.

Note: If the STGID parameter specifies the address of an existing storage area,
the USER/SHARED parameter must specify the same option as that
specified in the GET STORAGE statement that originally allocated the
storage area.

VALUE (initial-value)
Specifies (for new storage only) the value to which the storage area will be
initialized before it is returned to the issuing program. Initial-value specifies
either the symbolic name of a user-defined field that contains the initial value or
the value itself enclosed in single quotation marks. All bytes of the acquired
storage area are initialized to the same value.

LOCATION IS ANY/BELOW
Specifies that storage must be allocated from below the 16-megabyte line
(BELOW) or is eligible for allocation above the 16-megabyte line (ANY). ANY
is the default.

Example: The following statement allocates the shared kept storage area, 09PA, and
initializes it to all zeros:

6-102 CA-IDMS DML Reference — PL/I

6.42 GET STORAGE (DC/UCF)

GET STORAGE FOR (EMPLMENU_KEPT_STORAGE)

 TO (EMPLMENU_KEPT_STORAGE_END)

 NOWAIT

 KEEP

 SHORT

 SHARED

 STGID ('�9PA')

 VALUE (LOW_VALUE);

Status codes: Upon completion of the GET STORAGE function, the
ERROR_STATUS field of the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3201 The requested storage cannot be allocated immediately; to wait
would cause a deadlock.

3202 The requested storage cannot be allocated because insufficient
space exists in the storage pool.

3210 The request specified a storage ID that did not previously exist; the
required space has been allocated.

3231 The request specifies an invalid parameter list.

3232 The requested length is zero or negative. The request cannot be
serviced because the variable storage The request cannot be
serviced because the specified 01-level

Chapter 6. Data Manipulation Language Statements 6-103

6.43 GET TIME (DC/UCF)

6.43 GET TIME (DC/UCF)

The GET TIME statement obtains the time of day and date from the operating system.
The system time is returned to the issuing task in either fixed binary, packed decimal,
or edited format. The date is returned to the program in packed decimal format.

 Syntax

��─── GET TIME ─┬─────────────────────────────────────┬───────────────────────�

└─┬────────────┬─ INTO (return-time) ─┘

├─ BINARY ← ─┤

├─ DECIMAL ──┤

└─ EDIT ─────┘

 �─┬───────────────────────────┬─ ; ──��

└─ DATE INTO (return-date) ─┘

 Parameters

BINARY/DECIMAL/EDIT
Specifies the format in which the time is to be returned to the issuing program.
The requested formats can be fixed binary, decimal, or edited. In all cases, the
returned value indicates the time since midnight:

BINARY
Returns the time in pure (absolute) binary format representing the elapsed
time since midnight in ten-thousandths of a second. If BINARY is specified,
the field associated with return-time must be a fixed binary field capable of
holding a number at least as large as the number of ten-thousandths seconds
in a day (864,000,000). This option provides the finest resolution of time
available. BINARY is the default.

DECIMAL
Returns the time in the format ohhmmssttttc (padded zero, hours, minutes,
seconds, ten-thousandths of a second, sign). If DECIMAL is specified, the
field associated with return-time should be declared as FIXED
DECIMAL(11).

EDIT
Returns the time as an edited character string in the format hh:mm:ss:hh
(hours, minutes, seconds, hundredths of a second). The field size and type
associated with return-time should be defined as CHAR(11).

INTO (return-time)
Specifies the field to which the system will return the time. Return-time is the
symbolic name of a user-defined field to which the current time will be returned.
The required field size and type depend on the requested format, as described
above.

DATE INTO (return-date)
Specifies the field to which the system will return the date obtained from the
operating system. Return-date is the symbolic name of the user-defined field to
which the Julian date is returned. The Julian date is returned in FIXED
DECIMAL(7) format: 0yyydddc (padded zero, current year relative to 1900, date,

6-104 CA-IDMS DML Reference — PL/I

6.43 GET TIME (DC/UCF)

sign). For example, 0099365C would represent December 31, 1999. 0100001C
would represent January 1, 2000.

Example: The following statement returns the current time and date to the
CURRENT_TIME and CURRENT_DATE fields, respectively:

 GET TIME

EDIT INTO (CURRENT_TIME)

DATE INTO (CURRENT_DATE);

Status codes: Upon completion of the GET TIME function, the only possible value
in the ERROR_STATUS field of the IDMS-DC communications block is 0000.

Chapter 6. Data Manipulation Language Statements 6-105

6.44 IF

 6.44 IF

The IF statement allows the program to test for the presence of member record
occurrences in a set and to determine the membership status of a record occurrence in
a specified set; once the set has been evaluated, the IF statement specifies further
action based on the outcome of the evaluation. For example, an IF statement might be
used to determine whether a set occurrence is empty and, if it is empty, to erase the
owner record.

Note: 1: DML IF statements cannot be nested within PL/I IF statements. An
alternative approach is to place DML IF statements within DO...END blocks,
or their equivalents.

Native VSAM users: The IF statement is not valid for sets defined with member
records that are stored in native VSAM datasets.

Depending on its format, the IF statement uses set or run-unit currency. The object set
occurrence of an IF statement is determined by the owner of the current record of the
named set; the object record occurrence is determined by the current of run unit.

Each IF statement contains a conditional phrase and an imperative statement. When
an IF is issued, the DML precompiler first generates a call to the DBMS to execute
the conditional phrase; the results of the test determine whether or not the imperative
statement is executed.

 Syntax

��── IF ─┬───────┬─ SET (set-name) ─┬─ EMPTY ─┬─ THEN imperative-statement;──��

├─ NOT ─┤ └─ MEMBER ─┘

└─ ¬ ───┘

 Parameters

IF SET (set-name) EMPTY THEN imperative-statement
Evaluates the current owner occurrence of the named set for the presence of
member record occurrences and, depending on the outcome of the evaluation,
executes the imperative statement. Set-name must specify a set included in the
subschema.

If NOT is specified, the imperative statement is executed only if the named set has
one or more member records (that is, ERROR_STATUS is 1601). If NOT is
omitted, the imperative statement is executed only if the set is empty (that is,
ERROR_STATUS is 0000).

IF SET (set-name) MEMBER THEN imperative-statement
Determines whether the current record of run unit participates as a member in any
occurrence of the named set and, depending on the outcome of the evaluation,
executes the imperative statement. Set-name must specify a set included in the
subschema.

If NOT is specified, the imperative statement is executed only if the named record
is not a member of the named set (that is, ERROR_STATUS is 1601). If NOT is

6-106 CA-IDMS DML Reference — PL/I

6.44 IF

omitted, the imperative statement is executed only if the record is a member of the
set (that is, ERROR_STATUS is 0000).

Example: The following statement tests the COVERAGE_CLAIMS set for existing
CLAIMS members and, if no occurrences of the CLAIMS record are found
(ERROR_STATUS is 0000), moves a message to that effect to the location
CLAIMS_WS:

If the current occurrence of the COVERAGE_CLAIMS set contains one or more
occurrences of the CLAIMS record (ERROR_STATUS is 1601), the assignment
statement is ignored and the next statement in the program is executed.

IF SET (COVERAGE_CLAIMS) EMPTY

THEN CLAIMS_WS = 'NONE';

The following statement verifies that the EMPLOYEE record that is current of run unit
is not a member of the current occurrence of the OFFICE_EMPLOYEE set before
code is executed to connect the EMPLOYEE record to that set:

If the EMPLOYEE record is not a member of the OFFICE_EMPLOYEE set
(ERROR_STATUS is 1601), the program performs the LINK_SET procedure. If the
EMPLOYEE record is already a member of the OFFICE_EMPLOYEE set
(ERROR_STATUS is 0000), the CALL statement is ignored and the next statement in
the program is executed.

IF NOT SET (OFFICE_EMPLOYEE) MEMBER

THEN CALL LINK_SET;

Status codes: Upon completion of the IF function, the ERROR_STATUS field in
the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 Either the set is empty or the record that is current of run unit is a
member of the set.

1601 Either the set is not empty or the record that is current of run unit
is not a member of the set.

1606 Currency has not been established for the named set.

1608 Either an invalid set name has been specified or the current record
of run unit is not a member of the named set.

1613 A current record of run unit either has not been established or has
been nullified by a preceding ERASE statement.

Chapter 6. Data Manipulation Language Statements 6-107

6.45 INQUIRE MAP (DC/UCF)

6.45 INQUIRE MAP (DC/UCF)

The INQUIRE MAP statement is used after a map input request to accomplish one of
the following actions related to the input operation:

■ Move map-related information into variable storage

■ Test for conditions relating to global map input operations

■ Test specific map fields for the presence of the cursor

■ Test for conditions relating to specific map fields

Each of these actions is discussed on the following pages.

The following rules apply to INQUIRE MAP statements:

■ If any of the test conditions are requested, INQUIRE MAP must specify a
statement that will be executed if the condition is found to be true.

■ An INQUIRE MAP statement can specify only one field-oriented inquiry. This
inquiry can be specified alone or in combination with a map-specific inquiry.

6.45.1 Moving map-related data

This version of the INQUIRE MAP statement moves one of the following map-related
data items into variable storage:

■ The attention ID (AID) key used

■ The current cursor position (row and column)

■ The entered length of a specific map input field

 Syntax

��─── INQUIRE MAP (map-name) ───�

 �─── MOVE ─┬─ AID TO (aid-indicator) ───────────────────────┬─ ; ────────────��

├─ CURSOR TO (cursor-row) (cursor-column) ──────┤

└─ IN LENGTH FOR (field-name) TO (field-length) ─┘

 Parameters

INQUIRE MAP (map-name)
Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the
DECLARE MAP statement, as described in Chapter 5, “DML
Precompiler-Directive Statements” on page 5-1.

MOVE
Moves screen-related information to program variable storage:

AID TO (aid-indicator)
Returns the attention ID to the specified location in variable storage.
Aid-indicator is the symbolic name of a 1-byte user-defined field that will be

6-108 CA-IDMS DML Reference — PL/I

6.45 INQUIRE MAP (DC/UCF)

set to the 3270 AID character received in the last map input request. The
following table lists the AID characters associated with each 3270-type
control key.

CURSOR TO (cursor-row) (cursor-column)
Returns the cursor address from the last map input function to the specified
location in program variable storage. Cursor-row and cursor-column are the
symbolic names of user-defined FIXED BINARY(15) fields to which the row
and column cursor address will be returned.

IN LENGTH FOR (field-name) TO (field-length)
Returns the length, in bytes, of the data in the named map field to the
specified location in program variable storage. Field-name is the name of the
map field for which the length is being requested; field-length is the symbolic
name of a user-defined fixed binary field.

Example: The following example illustrates the use of an INQUIRE MAP statement
to move the 3270 AID character received in the last map input request to
DC_AID_IND_V:

INQUIRE MAP (EMPMAPLR)

MOVE AID TO (DC_AID_IND_V);

Key AID character

ENTER

CLEAR

PF1

PF2

PF3

PF4

PF5

PF6

PF7

PF8

PF9

PF1�

PF11

PF12

PF13

PF14

PF15

PF16

PF17

PF18

PF19

PF2�

PF21

PF22

PF23

PF24

PA�1

PA�2

PA�3

"'" (single quote)

'_' (underscore)

'1'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

':'

'#'

'@'

'A'

'B'

'C'

'D'

'E'

'F'

'G'

'H'

'I'

'¢'

'.'

'<'

'%'

'>'

','

Chapter 6. Data Manipulation Language Statements 6-109

6.45 INQUIRE MAP (DC/UCF)

6.45.2 Testing for global map input conditions

This version of the INQUIRE MAP statement tests for one of the following global
map input conditions:

■ If the screen was not formatted before the input operation was performed

■ If one or more input fields were truncated when transferred to variable-storage
data fields

■ If one or more input fields were modified on the screen before being transferred

■ If one or more fields that were modified on the screen are undefined in the map
being used

 Syntax

��─── INQUIRE MAP (map-name) ───�

 �─── IF INPUT ─┬─ UNFORMATTED ─┬─ THEN imperative-statement; ────────────────��

├─ TRUNCATED ───┤

├─ CHANGED ─────┤

└─ EXTRANEOUS ──┘

 Parameters

MAP (map-name)
Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the
DECLARE MAP statement, as described in Chapter 5, “DML
Precompiler-Directive Statements” on page 5-1.

IF INPUT UNFORMATTED/TRUNCATED/CHANGED/EXTRANEOUS
Tests the outcome of the last map input request for conditions relating to the data
input to the program:

UNFORMATTED
Tests whether the screen had been formatted before the input operation was
performed.

TRUNCATED
Tests whether any of the map fields were truncated when transferred to
variable-storage data fields.

CHANGED
Tests whether any of the map fields actually had been mapped to
variable-storage data fields when the map input operation was performed.

EXTRANEOUS
Tests whether the input data stream contained any data from a field not
defined to the map. If this condition is true, the undefined data field is
ignored by the system.

6-110 CA-IDMS DML Reference — PL/I

6.45 INQUIRE MAP (DC/UCF)

THEN imperative-statement
Specifies the action to be taken when the test condition is true.
Imperative-statement can be a single PL/I statement, a DML statement, or a nested
block of PL/I and DML statements.

Example: The following example illustrates an INQUIRE MAP statement that tests
to determine if any fields in the EMPMAPLR map have been truncated and, if so,
requests that the system perform the DATA_TRUNC routine:

INQUIRE MAP (EMPMAPLR)

IF INPUT TRUNCATED

THEN CALL DATA_TRUNC;

6.45.3 Testing for cursor position

This version of the INQUIRE MAP statement tests a specified map field for the
presence of the cursor.

 Syntax

��─── INQUIRE MAP (map-name) ───�

 �─── IF CURSOR AT DFLD (field-name) THEN imperative-statement;───────────────��

 Parameters

MAP (map-name)
Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the
DECLARE MAP statement, as described in Chapter 5, “DML
Precompiler-Directive Statements” on page 5-1.

IF CURSOR AT DFLD (field-name)
Determines whether the cursor was in the named map field during the last map
input operation. Field-name identifies the field within the named map to be tested.

THEN imperative-statement
Specifies the action to be taken when the test condition is true.
Imperative-statement can be a single PL/I statement, a DML statement, or a nested
block of PL/I and DML statements.

Example: The following example illustrates an INQUIRE MAP statement that tests
for the presence of the cursor in the PASSED_DATA_01 data field; if the cursor is
present in this field, the CHECK_2 routine is performed:

INQUIRE MAP (EMPMAPLR)

IF CURSOR AT DFLD (EMP_LAST_NAME_�415)

THEN CALL CHECK_2;

Chapter 6. Data Manipulation Language Statements 6-111

6.45 INQUIRE MAP (DC/UCF)

6.45.4 Testing for input error conditions

This version of the INQUIRE MAP statement tests:

■ Whether map fields have been modified.

■ Whether map fields have been erased by operator action.

■ Whether map fields have been truncated.

■ Whether the specified map fields are either in error (the error flag has been set on
for those fields) or are correct (the error flag has been set off); this option applies
only to those maps and map fields for which automatic editing is enabled.

 Syntax

��─── INQUIRE MAP (map-name) ───�

 �─ IF ┬─ CURRENT ──┬�─

├─ ALL ──┤

├─ NONE ───┤

├─ ANY ──┤

├─ SOME ───┤

├─ ALL ─┬─ BUT ────┬─ CURRENT ───────────────────────────────────────┤

 │ └─ EXCEPT ─┘ │

 │ ┌─────────────────────┐ │

├┬─ ALL ──────────────┬─↓─ DFLD (field-name) ─┴──────────────────────┤

│├─ NONE ─────────────┤ │

│├─ ANY ──────────────┤ │

│├─ SOME ─────────────┤ │

│└─ ALL ─┬─ BUT ────┬─┘ │

│ └─ EXCEPT ─┘ │

 │ ┌─────────────────────┐ │

└─↓─ DFLD (field-name) ─┴──┘

─�──┬─ DATA ─┬─ YES ───────┬─┬──�

│ ├─ NO ────────┤ │

│ ├─ ERASE ─────┤ │

│ ├─ TRUNCATED ─┤ │

│ ├─ IDENTICAL ─┤ │

│ └─ DIFFERENT ─┘ │

└─ EDIT ─┬─ ERROR ───┬───┘

└─ CORRECT ─┘

 �── THEN imperative-statement; ──��

 Parameters

MAP (map-name)
Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the
DECLARE MAP statement, as described in Chapter 5, “DML
Precompiler-Directive Statements” on page 5-1.

IF CURRENT/ALL/NONE/ANY/SOME/ALL BUT (EXCEPT) CURRENT
Specifies the map fields to which the test applies:

CURRENT
Applies the test only to the current field; that is, the map field that was
referenced in the last MODIFY MAP or INQUIRE MAP statement issued by

6-112 CA-IDMS DML Reference — PL/I

6.45 INQUIRE MAP (DC/UCF)

the program. If the last MODIFY MAP or INQUIRE MAP statement
specified a field list, no currency exists.

ALL
Specifies that the test is true if all map fields meet the specified condition.

NONE
Specifies that the test is true if none of the map fields meet the specified
condition.

ANY
Specifies that the test is true if one or more of the map fields meet the
specified condition.

SOME
Specifies that the test is true if one or more but not all of the map fields meet
the specified condition.

ALL BUT CURRENT
Specifies that the test is true if all of the map fields except for the current
field meet the specified condition. The keywords BUT and EXCEPT are
synonymous.

IF ALL/NONE/ANY/SOME/ALL BUT DFLD (field-name)
Specifies the extent to which the condition applies to the map fields.

ALL
Specifies that the test is true if all of the named map fields meet the specified
condition. ALL is the default.

NONE
Specifies that the test is true if none of the named map fields meet the
specified condition.

ANY
Specifies that the test is true if one or more of the named map fields meet the
specified condition.

SOME
Specifies that the test is true if one or more but not all of the named map
fields meet the specified condition.

ALL BUT
(Release 10.2 only) specifies that the test is true if all of the data fields except
the named map fields meet the specified condition. The keywords BUT and
EXCEPT are synonymous.

IF DFLD (field-name)
Specifies the individual map fields to which the test conditions apply. Field-name
must be the name of a field within the named map. Multiple DFLD specifications
must be separated by at least one blank.

DATA IS
Specifies the input test condition.

Chapter 6. Data Manipulation Language Statements 6-113

6.45 INQUIRE MAP (DC/UCF)

YES
Determines if the terminal operator entered data in the named map fields.

NO
Determines if the terminal operator did not enter data in the named map
fields.

ERASE
Determines if data has been erased from the named map fields.

TRUNCATED
Determines if data has been truncated in the named map fields.

IDENTICAL
Determines whether input data is identical to the map data currently in the
program's variable storage. IDENTICAL is true in either of the following
cases:

■ The field's modified data tag (MDT) is off. On mapin, the MDT
typically is off if the user did not type any characters in the field.

■ The MDT is on, but each character in the input data is exactly the same
as data in variable storage, including capitalization.

DIFFERENT
Determines whether input data is different from the map data currently in the
program's variable storage. DIFFERENT is true if the field's MDT is on and
at least one input character differs from the data in variable storage.

EDIT
Automatic editing/error handling tests for errors in the named map fields.

Note: If the EDIT parameter is specified, automatic editing must be enabled for
the map and for each of the named map fields.

ERROR
Determines if the named map fields were found to be in error during
automatic editing.

CORRECT
Determines if the named map fields were found to be correct during automatic
editing.

THEN imperative-statement
Specifies the action to be taken when the test condition is true.
Imperative-statement can be a single PL/I statement, a DML statement, or a nested
block of PL/I and DML statements.

Example: The following example determines if automatic editing has detected
erroneous data in any field in the EMPMAPLR map; if so, the program modifies the
map temporarily to display the erroneous fields with the bright and blinking attributes:

INQUIRE MAP (EMPMAPLR)

IF ANY EDIT ERROR

THEN MODIFY MAP (EMPMAPLR) TEMPORARY

FOR ALL ERROR FIELDS

ATTRIBUTES BRIGHT BLINK;

6-114 CA-IDMS DML Reference — PL/I

6.45 INQUIRE MAP (DC/UCF)

Status codes: Upon completion of the INQUIRE MAP function, the
ERROR_STATUS field of the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4629 An invalid parameter has been passed from the program.

4641 The test condition has been found to be true. (This condition is
tested for automatically by PL/I DML expansion statements.)

4644 The referenced map field is not in the specified map; a possible
cause is a reference to an invalid map field subscript.

4656 The referenced map contains no data fields.

Chapter 6. Data Manipulation Language Statements 6-115

6.46 KEEP

 6.46 KEEP

The KEEP statement places an explicit shared or exclusive lock on a record that is
current of run unit, record, set, or area. Locks placed on records through the KEEP
function are maintained either for the duration of the recovery unit or until explicitly
released by means of the COMMIT or FINISH statements.

 Syntax:

��─── KEEP ─┬─────────────┬─ CURRENT ─┬────────────────────────┬─ ; ──────────��

└─ EXCLUSIVE ─┘ ├─ RECORD (record-name) ─┤

├─ SET (set-name) ───────┤

└─ AREA (area-name) ─────┘

 Parameters

CURRENT
Places an explicit shared lock on the record occurrence that is current of run unit.
If the optional keyword EXCLUSIVE is specified, the current record of run unit
receives an exclusive lock.

RECORD (record-name)/SET (set-name)/AREA (area-name)
Specifies that the lock will be placed on the current record of the named record
type, set, or area.

Example: The following example places an exclusive lock on the current
EMPLOYEE record occurrence:

KEEP EXCLUSIVE CURRENT RECORD (EMPLOYEE);

Status codes: Upon completion of the KEEP function, the ERROR_STATUS field
in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0606 Currency has not been established for the named record, set, or
area.

0608 Either the named record or set is not in the subschema or the
current record of run unit is not a member of the named set.

0610 The program's subschema specifies an access restriction that
prohibits execution of the KEEP function.

0623 The named area is not in the subschema.

0626 The record to be kept has been erased.

0629 Deadlock occurred during locking of target record.

6-116 CA-IDMS DML Reference — PL/I

6.47 KEEP LONGTERM (DC/UCF)

6.47 KEEP LONGTERM (DC/UCF)

The KEEP LONGTERM statement establishes longterm record locks and/or monitors
access to records between tasks. Longterm database locks are used in
pseudo-conversational transactions and can be shared or exclusive:

■ Longterm shared locks allow other run units to access the locked record but
prevent run units from updating the record as long as the lock is maintained.

■ Longterm exclusive locks prevent other run units from accessing the locked
record. However, run units executing on the logical terminal associated with the
issuing task are not restricted from accessing the locked record. Therefore,
subsequent tasks in a transaction can access the locked record and complete the
database processing required by the transaction.

If a record has been locked with a KEEP LONGTERM or KEEP request, restrictions
exist on the type of lock that can be placed on that record by other run units. These
restrictions are based on existing locks and whether the requesting run unit is
executing on the same logical terminal as the run unit that originally placed the lock
on the record. The following table illustrates these restrictions.

Tasks can monitor database activity associated with a specified record during a
pseudo-converse and, if desired, can place a longterm lock on the record being
monitored. A subsequent task can then make inquiries about that database activity for
the record and take the appropriate action.

The DC/UCF system maintains information on database activity by using five bit flags,
each of which is either turned on (binary 1) or turned off (binary 0). This information
is returned to the program as a numeric value. The bit assignments, the corresponding

Locks in effect Locks allowed for other run
units

Locks disallowed for other
run units

Shared Shared and longterm shared Exclusive and longterm
exclusive

Exclusive None Shared, exclusive, longterm
shared, and longterm
exclusive

Longterm shared For all run units: shared and
longterm shared

For run units on the same
terminal: exclusive and
longterm exclusive

For run units on other
terminals: exclusive and
longterm exclusive

Longterm
exclusive

For run units on the same
terminal: shared, exclusive,
longterm shared, and
longterm exclusive

For run units on other
terminals: shared, exclusive,
longterm shared, longterm
exclusive

Chapter 6. Data Manipulation Language Statements 6-117

6.47 KEEP LONGTERM (DC/UCF)

numeric value returned to the program, and a description of the associated database
activity follow:

To determine the action or combination of actions that has occurred, you can compare
the numeric value returned to the program with an appropriate constant. For example:

■ If the returned value is 0, no database activity occurred for the specified record.

■ If the returned value is 2, the record's data was modified.

■ If the returned value is 2 or greater, the record was altered in some way.

■ If the returned value is 8 or greater, the record was deleted.

The maximum possible value is 31, indicating that all the above actions occurred for
the specified record.

You may prefer to monitor database activity across a pseudo-converse rather than to
set longterm locks. Monitoring does not restrict access to database records, sets, or
areas by other run units; however, it does enable a program to test a record for
alterations made by other run units. The presence of longterm locks can prevent other
run units from accessing locked records for an undesirable amount of time if, during a
pseudo-converse, the terminal operator fails to enter a response. If longterm locks are
used, you may want to release them at specified intervals.

�� For more information regarding the use of timeout intervals, refer to CA-IDMS
System Generation.

 Syntax

Numeric
value

Bit
assignment

Description

16 X'00000010' The record was physically deleted.

8 X'00000008' The record was logically deleted.

4 X'00000004' The record's prefix was modified; that is, a set
operation (for example, CONNECT or
DISCONNECT) occurred involving the record.

2 X'00000002' The record's data was modified.

1 X'00000001' The record was obtained.

6-118 CA-IDMS DML Reference — PL/I

6.47 KEEP LONGTERM (DC/UCF)

��─── KEEP LONGTERM (─┬─ ALL ─────────┬─) ──────────────────────────────────�

└─ longterm-id ─┘

 �─┬─ NOTIFY CURRENT ─┬─ RECORD (record-name) ─┬───────────────────────────┬;─��

│ ├─ SET (set-name) ───────┤ │

│ └─ AREA (area-name) ─────┘ │

├┬─ SHARE ─────┬─ CURRENT ─┬─ RECORD (record-name) ─┬─┬──────────────┬──┤

│└─ EXCLUSIVE ─┘ ├─ SET (set-name) ───────┤ ├─ WAIT ← ─────┤ │

│ └─ AREA (area-name) ─────┘ ├─ NOWAIT ─────┤ │

│ └─ NODEADLOCK ─┘ │

├─ upgrade-specification ───┤
├─ TEST ─┬──┬───────────────┤

│ └─ RETURN NOTIFICATION INTO (return-location) ─┘ │

└─ RELEASE ───┘

Expansion of upgrade-specification

��─┬───�─

└ UPGRADE ─┬ SHARE ─────┬┬──┬──

└ EXCLUSIVE ─┘└ RETURN NOTIFICATION INTO (return-location) ┘

─�──────────────────┬──��

 ─┬──────────────┬─┘

├─ WAIT ← ─────┤

├─ NOWAIT ─────┤

└─ NODEADLOCK ─┘

 Parameters

LONGTERM (ALL)/ (longterm-id)
Specifies the 1- to 16-character identifier that will be used in subsequent KEEP
LONGTERM requests to upgrade or release a longterm lock or to make inquiries
about database activity associated with the specified record. Longterm-id is either
the symbolic name of a user-defined field that contains the longterm ID, or the ID
itself enclosed in single quotation marks.

ALL is used only with the RELEASE parameter (described below) to request that
the system release all longterm locks kept for the logical terminal associated with
the current task.

NOTIFY CURRENT RECORD (record-name)/SET (set-name) /AREA
(area-name)
Monitors database activity associated with the current occurrence of the named
record type or the current record of the named set or area. When NOTIFY
CURRENT is specified, the system initializes a preallocated location in the
program to contain information on database activity for the specified record.

SHARE/EXCLUSIVE CURRENT RECORD (record-name)/SET
(set-name)/AREA (area-name)
Specifies that the current occurrence of the named record type or the current
record of the named set or area will receive a longterm shared (SHARE) or
longterm exclusive (EXCLUSIVE) lock.

upgrade-specification
Upgrades a previous KEEP LONGTERM NOTIFY CURRENT request by placing
a shared (SHARE) or exclusive (EXCLUSIVE) longterm lock on the record
identified by longterm-id.

Chapter 6. Data Manipulation Language Statements 6-119

6.47 KEEP LONGTERM (DC/UCF)

WAIT
Requests the issuing task to wait for the existing lock to be released. If the wait
would cause a deadlock, the system terminates the task abnormally. WAIT is the
default.

NOWAIT
Requests the issuing task not to wait for the existing lock to be released.

NODEADLOCK
Requests the issuing task to wait for the existing lock to be released, unless to do
so would cause a deadlock. If the wait would cause a deadlock, the system
returns control to the task.

RETURN NOTIFICATION INTO (return-location)
Returns information on database activity for that record. Return-location is the
symbolic name of a user-defined FIXED BINARY(31) field that contains the
program variable-storage entry of the data area to which the system will return the
information.

TEST RETURN NOTIFICATION INTO (return-location)
Requests that the system return information on database activity associated with
the record identified by longterm-id to a previously allocated location in the
program's storage. Return-location is the symbolic name of a user-defined FIXED
BINARY(31) field that contains the program variable-storage entry of the data
area to which the system will return the information.

TEST must specify a longterm lock ID that matches the longterm lock ID
specified in a previous KEEP LONGTERM NOTIFY CURRENT request.

RELEASE
Releases the longterm lock for the record identified by longterm-id or all record
locks (ALL) owned by the logical terminal associated with the current task.
RELEASE also releases the information associated with a previous KEEP
LONGTERM NOTIFY request.

Example: The steps below illustrate the use of the KEEP LONGTERM statement:

1. Begin monitoring database activities for the current occurrence of the
EMPLOYEE record by coding:

KEEP LONGTERM (KEEP_ID)

NOTIFY CURRENT RECORD (EMPLOYEE);

2. Return statistics of database activities for the record identified by KEEP_ID into
STAT_VALUE by coding:

KEEP LONGTERM (KEEP_ID) TEST RETURN NOTIFICATION

 INTO (STAT_VALUE);

3. Depending on the value returned to STAT_VALUE, you may want to put a
longterm shared lock on the EMPLOYEE record identified by KEEP_ID by
coding:

KEEP LONGTERM (KEEP_ID) UPGRADE SHARE;

4. Upon processing, release all longterm locks by coding:

KEEP LONGTERM (ALL) RELEASE;

6-120 CA-IDMS DML Reference — PL/I

6.47 KEEP LONGTERM (DC/UCF)

Status codes: Upon completion of the KEEP LONGTERM function, the
ERROR-STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5101 The NODEADLOCK option has been specified; however, to wait
would cause a deadlock. Control has returned to the issuing task.

5102 Unable to obtain storage for the required KEEP LONGTERM
control blocks.

5105 Either the requested record type cannot be found or currency has
not been established.

5113 The required area control block was not found in the DMCL.

5121 Either the requested longterm ID cannot be found or the KEEP
LONGTERM request was issued by a nonterminal task.

5123 The specified area cannot be found.

5131 The parameter list is invalid.

5147 The KEEP LONGTERM area has not been readied.

5148 The run unit associated with the KEEP LONGTERM request has
not been bound.

5149 The NOWAIT option has been specified; however, a wait is
required.

5151 A lock manager error occurred during the processing of the KEEP
LONGTERM request.

5159 An error occurred in transferring the KEEP LONGTERM request
to IDMSKEEP.

5160 The requested KEEP LONGTERM lock ID was already in use with
a different page group.

5161 The requested KEEP LONGTERM lock ID was already in use with
a different BDKey format.

Chapter 6. Data Manipulation Language Statements 6-121

6.48 LOAD TABLE (DC/UCF)

6.48 LOAD TABLE (DC/UCF)

The LOAD TABLE statement instructs the system to load a table (module or program)
into the program pool.

 Syntax

��── LOAD TABLE (table-name) POINTER (table-location-pointer) ─┬──────────┬;─��

├─ WAIT ← ─┤

└─ NOWAIT ─┘

 Parameters

table-name
Specifies the 1- to 8-character name of the table to be loaded. Table is either the
symbolic name of a user-defined field that contains the table, or the name itself
enclosed in single quotation marks.

POINTER (table-location-pointer)
Specifies the pointer variable for referencing the loaded table. After the table has
been loaded, the pointer contains the address of the beginning of the table.

WAIT
Requests the issuing task to wait until sufficient storage becomes available. If
WAIT is specified and the system encounters an insufficient storage condition, the
issuing task is placed in an inactive state; when the LOAD TABLE function is
completed, control returns to the issuing task according to its previously
established dispatching priority. WAIT is the default.

NOWAIT
Requests the issuing task not to wait for storage to become available. If
NOWAIT is specified, the system returns a value of 3402 to the
ERROR_STATUS field when an insufficient storage condition exists.

Example: The following source code defines the data required for use with the
LOAD TABLE request:

DCL STATECON_POINTER POINTER;

DCL 1 STATECON(5�) BASED (STATECON_POINTER),

3 STATE_ABB CHAR(2),

3 STATE_FULL CHAR(15);

The following statement loads the STATECON table into the program variable-storage
area identified by the pointer STATECON_POINTER:

LOAD TABLE (STATECON)

 POINTER (STATECON_POINTER);

Status codes: Upon completion of the LOAD TABLE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

6-122 CA-IDMS DML Reference — PL/I

6.48 LOAD TABLE (DC/UCF)

Status code Meaning

0000 The request has been serviced successfully.

3401 The requested module cannot be loaded immediately due to
insufficient storage; to wait would cause a deadlock.

3402 The requested module cannot be loaded because insufficient storage
exists in the program pool.

3407 The requested module cannot be loaded because an I/O error has
occurred during processing.

3414 The requested module cannot be loaded because it has been defined
as noncurrent and is currently in use.

3415 The requested module has been overlaid temporarily in the program
pool and cannot be reloaded immediately.

3436 Either the requested program is not defined in the program
definition table (PDT) and is marked out of service, or null PDEs
are not specified or valid in this system.

Chapter 6. Data Manipulation Language Statements 6-123

6.49 MAP IN (DC/UCF)

6.49 MAP IN (DC/UCF)

The MAP IN statement requests a synchronous transfer of data from map fields on the
screen to the corresponding variable-storage data fields. The MAP IN statement can
also be used to transfer data from an area in variable storage that contains a 3270-like
data stream to map-related variable-storage data fields; this is referred to as a
native-mode data transfer.

 Syntax

��─── MAP IN (map-name) ──�

 �─┬──�─

└─┬─ IO ─┬────────────────────────┬──

│ └─ INPUT DATA ─┬─ YES ─┬─┘

│ └─ NO ──┘

└─ NOIO DATASTREAM FROM (mapped-data-location) ──────────────────────────

─�───────────────────────────────────────┬────────────────────────────────────�

 ─────────────────────────────────────┬─┘

 │

 │

─┬─ TO (end-mapped-data-location) ─┬─┘

└─ MAX LENGTH (data-length) ──────┘

 �─┬────────────────────────────────────┬─────────────────────────────────────��

├─ detail-specification ─────────────┤
└─ HEADER ─┬──────────────────────┬──┘

├─ PAGE (page-number) ─┤

└─ MODIFIED ───────────┘

Expansion of detail-specification

��─┬──�─

└─ DETAIL ┬ NEXT ← ───┬─

├─ FIRST ─┬──────────────────────────┬─────────────────────────┤

│ └─ RETURNKEY (data-field) ─┘ │

├─ KEY (key-name) ───┤

├─ SEQUENCE_NUMBER (sequence-field) ─┬────────────────────────┬┤

│ └ RETURNKEY (data-field)─┘│

└─ RETURNKEY (data-field) ─────────────────────────────────────┘

─�───┬──────────────────────────────────��

 ─┬──────────────────────┬─┬────────────┬─┘

└─ PAGE (page-number) ─┘ └─ MODIFIED ─┘

 Parameters

map-name
Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in Chapter 5, “DML Precompiler-Directive Statements” on
page 5-1.

IO/NOIO
Specifies the type of data transfer associated with the MAP IN request:

6-124 CA-IDMS DML Reference — PL/I

6.49 MAP IN (DC/UCF)

IO INPUT DATA YES/NO
Transfers data from map fields to variable-storage data fields that are
associated with the specified map.

INPUT DATA YES/NO
Specifies whether the contents of map fields will be moved to variable-storage
data fields (YES) or left unchanged (NO). This specification applies to all
variable-storage data fields unless overridden by an INPUT DATA IS
YES/NO clause in a previously issued MODIFY MAP request.

NOIO DATASTREAM FROM (mapped-data-location)
Transfers data from an area in program variable storage to the variable-storage
data fields that correspond to the specified map. No terminal I/O is
associated with the request.

Mapped-data-location is the symbolic name of a user-defined field that
contains the program variable-storage entry of the data stream to be read by
the system. The length of the data stream is determined through one of the
following specifications:

TO (end-mapped-data-location)
Indicates the end of the program variable-storage entry that contains the data
stream and is specified following the last data-item entry in
mapped-data-location. End-mapped-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the input data stream.

MAX LENGTH (data-length)
Explicitly defines the length, in bytes, of the input data stream. Data-length is
either the symbolic name of a user-defined field that contains the length of the
data stream, or the length itself expressed as a numeric constant.

detail-specification
Specifies (for pageable maps only) that the MAP IN operation is to retrieve data
from a modified detail occurrence (MDT set on). The contents of all map fields
in the detail occurrence are retrieved unless MODIFIED is specified for the MAP
IN DETAIL statement; MODIFIED causes only modified fields to be retrieved.

�� For more information on pageable maps, see the CA-IDMS Mapping Facility.

NEXT
Retrieves the next sequential modified detail occurrence. An end-of-data
condition (ERROR_STATUS is 4668) is returned in either of the following
cases:

■ No detail occurrences have been modified.

■ All modified detail occurrences have been mapped in already.

NEXT is the default.

FIRST
Retrieves the first available modified detail occurrence. The optional
RETURNKEY (data-field) clause specifies the name of a variable field in
which the system stores the 4-byte key value (if any) associated with the

Chapter 6. Data Manipulation Language Statements 6-125

6.49 MAP IN (DC/UCF)

retrieved detail occurrence. If no value is associated with the detail
occurrence, the system sets data-field to zero. Data-field, which does not
have to be fullword aligned, is the symbolic name of either a CHAR(4) or a
FIXED BINARY(31) field that contains the key value.

Note: A value is associated with a detail occurrence by using the KEY
parameter in a MAP OUT DETAIL command for that occurrence.

An end-of-data condition results if all modified data occurrences already have
been mapped in.

KEY (key)
Retrieves a modified detail occurrence based on the value associated with the
detail occurrence. Key is the name of a FIXED BINARY(31) field.

Note: A value is associated with a detail occurrence by using the KEY
parameter in the MAP OUT DETAIL command for that occurrence.

A detail-not-found condition is returned in either of the following cases:

■ The specified occurrence is not a modified detail occurrence.

■ No detail occurrence with the specified value is found.

SEQUENCE_NUMBER (sequence-field-name)
Retrieves a detail occurrence by sequence number. Detail occurrences are
built at runtime by the application program and are stored in the sequence in
which they are created. Sequence-field-name is a FIXED BINARY(31) field.

A detail-not-found condition is returned in either of the following cases:

■ The specified occurrence is not a modified detail occurrence.

■ No detail occurrence with the specified value is found.

The optional RETURNKEY (data-field) clause specifies the name of a
variable field in which the system stores the 4-byte key value (if any)
associated with the retrieved detail occurrence. If no value is associated with
the detail occurrence, the system sets data-field to zero. Data-field, which
does not have to be fullword aligned, is the symbolic name of either a
CHAR(4) or a FIXED BINARY(31) field that contains the key value.

RETURNKEY (data-field)
Performs the same operation as the NEXT clause (described previously) and
specifies the name of a variable field in which the system stores the 4-byte
value (if any) associated with the retrieved detail occurrence. If no value is
associated with the detail occurrence, the system sets data-field to 0.
Data-field, which does not have to be fullword aligned, is the symbolic name
of either a CHAR(4) or a FIXED BINARY(31) field that contains the key
value.

PAGE (page-number)
Specifies (for pageable maps only) the name of a variable field in which to
store the current value of the $PAGE field on mapin. Page-number is defined
as a FIXED BINARY(31) field.

6-126 CA-IDMS DML Reference — PL/I

6.49 MAP IN (DC/UCF)

MODIFIED
Specifies (for pageable maps only) that, within a modified detail occurrence,
only modified fields (MDT set on) are to be retrieved in the MAP IN
operation.

HEADER
Specifies (for pageable maps only) that the MAP IN operation is to retrieve the
contents of data fields in the header and footer areas. The contents of all data
fields in the header and footer areas are retrieved unless MODIFIED is specified
for the MAP IN HEADER statement; MODIFIED causes only modified fields to
be retrieved.

PAGE (page-number)
Specifies (for pageable maps only) the name of a variable field in which to
store the current value of the $PAGE field on mapin. Page-number is defined
as a FIXED BINARY(31) field.

MODIFIED
Specifies (for pageable maps only) that, within a modified detail occurrence,
only modified header fields (MDT set on) are to be retrieved in the MAP IN
operation.

Example: The following statement reads the EMPMAPLR map. Data values are
transferred from map fields on the EMPMAPLR map to the corresponding
variable-storage data fields. Subsequent commands can evaluate the input values and
perform appropriate processing.

MAP IN (EMPMAPLR)

INPUT DATA YES;

The following statement maps in the next modified detail occurrence of the
EMPMAPPG map:

MAP IN (EMPMAPPG)

 DETAIL

 NEXT;

Status codes: Upon completion of the MAP IN function, the ERROR_STATUS
field of the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4627 A permanent I/O error has occurred during processing.

4628 The dial-up line for the terminal has been disconnected.

4631 The map request block (MRB) contains an invalid field, indicating
a possible error in the program's parameters.

4632 The derived length of the specified map input data area is zero or
negative.

4633 The map load module named in the MRB cannot be found.

Chapter 6. Data Manipulation Language Statements 6-127

6.49 MAP IN (DC/UCF)

Status code Meaning

4638 The specified program variable storage entry has not been
allocated.

4639 The terminal being used is out of service.

4640 The NOIO option has been specified but the requested data stream
cannot be found.

4642 The requested map does not support the terminal device being
used.

4652 The specified edit or code table either cannot be found or is invalid
for use with the named map.

4654 A data conversion error has occurred; internal map data does not
match the map's data description.

4655 The user-written edit routine specified for the named map cannot
be found.

4664 The requested node for a header or detail was either not present or
not updated.

4668 No more modified detail occurrences require mapin.

4672 The scratch record that contains the requested detail could not be
accessed (internal error).

6-128 CA-IDMS DML Reference — PL/I

6.50 MAP OUT (DC/UCF)

6.50 MAP OUT (DC/UCF)

The MAP OUT statement creates or modifies detail occurrences for a pageable map or
requests a transfer of data from variable-storage data fields to map fields on the
terminal screen. MAP OUT can also be used to transfer data to another area in
program variable storage; this is referred to as a native mode data transfer.

 Syntax

��─── MAP OUT (map-name) ─┬──────────┬──�

├─ WAIT ← ─┤

└─ NOWAIT ─┘

 �──┬───────────────────────┬───�

├─ io-specification ────┤
└─ no-io-specification ─┘

 �─┬──┬─ ; ───────────────────────��

└─┬─ DETAIL ──┬───────────┬─┬──────────────┬─┬─┘

│ ├─ NEW ← ───┤ └─ KEY (key) ──┘ │

│ └─ CURRENT ─┘ │

└─ RESUME ─┬────────────────────────────┬──┘

└─ PAGE ─┬─ CURRENT ← ─────┬─┘

├─ NEXT ──────────┤

├─ PRIOR ─────────┤

├─ LAST ──────────┤

├─ FIRST ─────────┤

└─ (page-number) ─┘

Expansion of io-specification

��─┬──�─

└ IO ← ─┬──┬─────

└ OUTPUT ─┬──┬─┘

└ DATA ─┬─ YES ───────┬─┬─────────┬─┬──────────┬─┘

├─ NO ────────┤ └ NEWPAGE ┘ └ LITERALS ┘

├─ ERASE ─────┤

└─ ATTRibute ─┘

─�───┬────────��

 ─┬───┬─┘

└─ MESSAGE (message-text) ─┬─ TO (end-message-data-location) ─┬─┘

└─ LENGTH (message-data-length) ───┘

Expansion of no-io-specification

��─┬──�─

└─ NOIO DATASTREAM INTO (mapped-data-location) ────────────────────────────

─�──�─

─┬─ TO (end-mapped-data-location) ─┬──

└─ MAX LENGTH (max-data-length) ──┘

─�───┬────────────────────────────��

 ─┬───┬─┘

└─ RETURN LENGTH INTO (data-actual-length) ─┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-129

6.50 MAP OUT (DC/UCF)

map-name
Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in Chapter 5, “DML Precompiler-Directive Statements” on
page 5-1.

WAIT
Specifies that the data transfer will be synchronous. The system places the issuing
task in an inactive state. When the MAP OUT operation is complete, the task
resumes processing according to its established dispatching priority. WAIT is the
default.

NOWAIT
Specifies that the data transfer will be asynchronous; the task will continue
executing. If NOWAIT is specified, the program must issue a CHECK
TERMINAL before performing any other I/O operation.

io-specification
Specifies the type of data transfer associated with the MAP OUT request. IO (the
default) specifies that the data transfer is to a terminal device.

OUTPUT
Specifies (for I/O requests only) screen-display options for the data being output:

DATA
Specifies whether the variable-storage data fields are to be transmitted to the
terminal. This specification applies to all variable-storage data fields unless
overridden by an OUTPUT DATA clause in a previously issued MODIFY
MAP request. The following options apply:

YES
Transmits the contents of variable-storage data fields to the corresponding
map fields.

NO
Does not transmit the contents of variable-storage data fields to the
corresponding map fields. However, if the automatic error-handling
facility detects an error in any field, the system will transmit the
applicable attribute bytes.

ERASE
Does not transmit the contents of variable-storage data fields and fills the
corresponding map fields with null values.

ATTRIBUTE
Transmits only the attribute bytes for variable-storage data fields. Data in
the record buffer is not sent to the terminal.

NEWPAGE
Activates the erase-write function; the system clears the screen and transmits
both literal and variable fields to the map. If NEWPAGE is not specified, the
system will write over any existing screen display without first erasing it.
The keywords NEWPAGE and ERASE are synonymous.

To erase individual map fields, use the OUTPUT DATA ERASE option of
the MODIFY MAP statement (described later in this chapter). To request the

6-130 CA-IDMS DML Reference — PL/I

6.50 MAP OUT (DC/UCF)

system to erase all screen fields and to activate the erase-write function, the
MAP OUT statement must specify OUTPUT DATA ERASE NEWPAGE.

LITERALS
Transmits literal fields as well as variable-storage data fields to the terminal.
If LITERALS is not specified, the system will write literal fields to the map
only when a MAP OUT request specifies the NEWPAGE option.

MESSAGE (message-text)
Specifies (for IO requests only) the message to be displayed in the map's
message area. Message-text is the symbolic name of a program
variable-storage entry that contains the message text.

Note: The MESSAGE parameter can only be used with MAP OUT DETAIL
if the $MESSAGE field is associated with the detail occurrence at
map generation. To reference a message stored in the data dictionary,
use the ACCEPT TEXT INTO parameter of the WRITE LOG
statement (explained later in this chapter) to copy the message into
message-text.

TO (end-message-data-location)
Specifies the end of the program variable-storage entry that contains the
message text and is specified following the last data item in message-text.
End-message-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with
the output data stream.

LENGTH (message-data-length)
Defines the length, in bytes, of the message text. Message-data-length is
either the symbolic name of a user-defined field that contains the length
or the length itself expressed as a numeric constant.

no-io-specification
Transfers data from variable-storage data fields associated with the named map to
another area of program variable storage; no terminal I/O is associated with the
request. Mapped-data-location is the symbolic name of a user-defined field that
contains the program variable-storage entry to which the data will be transferred.

TO (end-mapped-data-location)
Indicates the end of the program variable-storage entry for the output data
stream and is specified following the last data-item entry in
mapped-data-location. End-mapped-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the output data stream.

MAX LENGTH (data-length)
Defines the maximum length of the output data stream. Data-length is either
the symbolic name of the user-defined fixed binary field that contains the
length of the data stream or the length itself expressed as a numeric constant.

The optional RETURN LENGTH INTO (data-actual-length) clause specifies
the program variable-storage entry to which the system will return the length,
in bytes, of the output data stream. If the data stream has been truncated,
data-actual-length contains the length before truncation.

Chapter 6. Data Manipulation Language Statements 6-131

6.50 MAP OUT (DC/UCF)

DETAIL
Specifies (for pageable maps only) that the MAP OUT command is to create or
modify a detail occurrence, and optionally associates a numeric key value with the
occurrence. For more information on pageable maps, see CA-IDMS Mapping
Facility.

NEW
Creates a detail occurrence of a pageable map. Occurrences are displayed in
the order in which they are created by the application program. NEW is the
default.

CURRENT
Modifies the detail occurrence that was referenced by the most recent MAP
IN DETAIL or MAP OUT DETAIL statement.

KEY (key)
Optionally specifies a value to be associated with the created or modified detail
occurrence. The 4-byte numeric value is not displayed on the terminal screen.
Key is the name of a FIXED BINARY(31) field that contains the db-key of the
database record associated with the detail occurrence.

When the KEY parameter is used with the MAP OUT DETAIL CURRENT
command, the specified value replaces the value (if any) previously associated
with the detail occurrence.

RESUME PAGE
Specifies (for pageable maps only) the page of detail occurrences to be mapped
out to the terminal:

CURRENT
Specifies that the current page is to be redisplayed. If no page has been
displayed, the first page of the pageable map is displayed. CURRENT is the
default.

NEXT
Specifies that the page that follows the current page is to be displayed. If no
page follows the current page, the current page is redisplayed.

PRIOR
Specifies that the page that precedes the current page is to be displayed. If no
page precedes the current page, the current page is redisplayed.

FIRST
Specifies that the first available page of detail occurrences is to be displayed.

LAST
Specifies that the page of detail occurrences with the highest available page
number is to be displayed.

page-number
Specifies a variable field that contains the number of the page to be displayed.
Page-number is defined as a FIXED BINARY(31) field. A page number is
stored in the variable field by a preceding MAP IN PAGE (page-number)
statement that names the same numeric variable field.

6-132 CA-IDMS DML Reference — PL/I

6.50 MAP OUT (DC/UCF)

Example: The following statement writes all literal and data fields associated with
the EMPMAPLR map to the terminal:

MAP OUT (EMPMAPLR)

OUTPUT DATA YES

 NEWPAGE

MESSAGE (INITIAL_MESSAGE) LENGTH (8�);

The following statement maps out the current detail; no terminal I/O is associated with
this request if the first page of the pageable map is not yet filled:

MAP OUT (EMPMAPPG)

 DETAIL

 KEY (DBKEY);

Status codes: Upon completion of the MAP OUT function, the ERROR_STATUS
field in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4625 The output operation has been interrupted; the operator has pressed
ATTENTION or BREAK.

4626 A logical error (for example, an invalid control character) has been
encountered in the output data stream.

4627 A permanent I/O error has occurred during processing.

4628 The dial-up line for the terminal has been disconnected.

4631 The map request block (MRB) contains an invalid field, indicating
a possible error in the program's parameters.

4632 The derived length of the specified map output data area is zero or
negative.

4633 The map load module named in the MRB cannot be found.

4638 The program variable-storage entry specified for return of the
output data stream has not been allocated.

4639 The terminal being used is out of service.

4640 The NOIO option has been specified but the requested data stream
cannot be found.

4642 The requested map does not support the terminal device being
used.

4652 The specified edit or code table either cannot be found or is invalid
for use with the named map.

4653 An error has occurred in a user-written edit routine.

4654 A data conversion error has occurred; internal map data does not
match the map's data description.

Chapter 6. Data Manipulation Language Statements 6-133

6.50 MAP OUT (DC/UCF)

Status code Meaning

4655 The user-written edit routine specified for the named map cannot
be found.

4664 There is no current detail occurrence to be updated (MAP OUT
DETAIL CURRENT only). No action is taken.

4668 The amount of storage defined for pageable maps at system
generation time is insufficient. No action is taken. This and
subsequent MAP OUT DETAIL statements are ignored.

4672 No detail occurrence, footer, or header fields exist to be mapped
out by a MAPOUT RESUME command.

4676 The first screen page has been transmitted to the terminal.

4680 The last detail for a screen was written; a map page is complete
and ready to be transmitted to the terminal.

6-134 CA-IDMS DML Reference — PL/I

6.51 MAP OUTIN (DC/UCF)

6.51 MAP OUTIN (DC/UCF)

The MAP OUTIN statement requests an output data transfer (MAP OUT) followed by
an input data transfer (MAP IN). MAP OUTIN combines the functions of the MAP
OUT and MAP IN requests; however, it cannot be used to perform pageable map
functions or native mode data transfers. By definition, the MAP OUTIN request is
synchronous; it forces the program to be conversational.

 Syntax

��─── MAP OUTIN (map-name) ───�

 �─┬───┬────�

└─ OUTPUT ─┬───────────────────────────┬─┬───────────┬─┬────────────┬─┘

└─ DATA ─┬─ YES ───────┬────┘ ├─ NEWPAGE ─┤ └─ LITERALS ─┘

├─ NO ────────┤ └─ ERASE ───┘

├─ ERASE ─────┤

└─ ATTRibute ─┘

 �─┬────────────────────────┬───�

└─ INPUT DATA ─┬─ YES ─┬─┘

 └─ NO ─┘

 �─┬───┬─ ; ──────��

└─ MESSAGE (message-text) ─┬─ TO (end-message-data-location) ─┬─┘

└─ LENGTH (data-length) ───────────┘

 Parameters

map-name
Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in Chapter 5, “DML Precompiler-Directive Statements” on
page 5-1.

OUTPUT
Specifies screen display-options for the data being output:

DATA YES/NO/ERASE/ATTRIBUTE
Specifies whether variable-storage data fields are to be transmitted to the
terminal. This specification applies to all variable-storage data fields unless
overridden by an OUTPUT DATA YES/NO clause in a previously issued
MODIFY MAP request.

YES
Transmits the contents of variable-storage data fields to the corresponding
map fields.

NO
Does not transmit the contents of variable-storage data fields to the
corresponding map fields. However, if the automatic error handling
facility detects an error in any field, the system will transmit the
applicable attribute bytes.

ERASE
Does not transmit the contents of variable-storage data fields and fills the
corresponding map fields with null values.

Chapter 6. Data Manipulation Language Statements 6-135

6.51 MAP OUTIN (DC/UCF)

ATTRIBUTE
Transmits only the attribute bytes for variable-storage data fields. Data in
the record buffer is not sent to the terminal.

NEWPAGE
Activates the erase-write function; the system clears the screen and transmits
both literal and variable fields to the map. If NEWPAGE is not specified, the
system will write over any existing screen display without first erasing it.
The keywords NEWPAGE and ERASE are synonymous.

To erase individual map fields, use the OUTPUT DATA ERASE option of
the MODIFY MAP statement (described later in this chapter). To request that
the system erase all screen fields and activate the erase-write function, the
MAP OUT statement must specify OUTPUT DATA ERASE NEWPAGE.

LITERALS
Transmits literal fields as well as variable-storage data fields to the terminal.
If LITERALS is not specified, the system will write literal fields to the map
only when a MAP OUT request specifies the ERASE option.

INPUT DATA YES/NO
Specifies whether the contents of map fields will be moved to variable-storage
data fields (YES) or left unchanged (NO).

This specification applies to all variable-storage data fields unless overridden by
an INPUT DATA YES/NO clause in a previously issued MODIFY MAP request.

MESSAGE (message-text)
Specifies the message to be displayed in the map's message area. Message-text is
the symbolic name of a program variable-storage entry that contains the message
text. The length of the message text is determined by one of the following
specifications:

TO (end-message-data-location)
Specifies the end of the program variable-storage entry that contains the
message text and is specified following the last data item in message-text.
End-message-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
output data stream.

LENGTH (data-length)
Defines the length in bytes of the message text. Data-length is either the
symbolic name of a user-defined field that contains the length, or the length
itself expressed as a numeric constant.

Note: To reference a message stored in the data dictionary, use the ACCEPT
TEXT INTO parameter of the WRITE LOG statement (described later in
this chapter) to copy the message into message-text.

Example: The following statement erases the screen, transmits literal and variable
map fields (null values), and performs a mapin operation when the operator presses an
AID key:

6-136 CA-IDMS DML Reference — PL/I

6.51 MAP OUTIN (DC/UCF)

MAP OUTIN (EMPMAPLR)

OUTPUT DATA ERASE NEWPAGE

INPUT DATA YES;

Status codes: Upon completion of the MAP OUTIN function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4625 The I/O operation has been interrupted; the terminal operator has
pressed ATTENTION or BREAK.

4626 A logical error (for example, an invalid control character) has been
encountered in the output data stream.

4627 A permanent I/O error has occurred during processing.

4628 The dial-up line for the terminal is disconnected.

4631 The map request block (MRB) contains an invalid field, indicating
a possible error in the program's parameters.

4633 The map load module named in the MRB cannot be found.

4639 The terminal being used is out of service.

4642 The requested map does not support the terminal device being
used.

4652 The specified edit or code table either cannot be found or is invalid
for use with the named map.

4653 An error has occurred in a user-written edit routine.

4654 A data conversion error has occurred; internal map data does not
match the map's data description.

4655 The user-written edit routine specified for the named map cannot
be found.

Chapter 6. Data Manipulation Language Statements 6-137

6.52 MODIFY MAP (DC/UCF)

6.52 MODIFY MAP (DC/UCF)

The MODIFY MAP statement requests that the system modify options in the map
request block (MRB) for a map; modifications can be designated as permanent or
temporary. Requested revisions can be field-specific, map-specific, or both;
field-specific revisions apply to the map's variable data fields.

Note: The MODIFY MAP statement parameters used to revise predefined map and/or
map data field attributes have no defaults. If a MODIFY MAP parameter is
not specified, the applicable option remains set to the value specified at map
generation or to the value specified in a previously issued MODIFY MAP
PERMANENT statement.

6-138 CA-IDMS DML Reference — PL/I

6.52 MODIFY MAP (DC/UCF)

 Syntax

��─── MODIFY MAP (map-name) ──�

 �─┬───────────────┬─┬───┬──────�

├─ PERMANENT ← ─┤ └─ CURSOR AT ─┬─ (cursor-row) (cursor-column) ─┬─┘

└─ TEMPORARY ───┘ └─ DFLD (field-name) ─────────────┘

 �─┬───────────────────────────────┬──�

 │ ┌────────────────────┐ │

└─ WCC ─↓─┬─┬─ RESETMDT ─┬─┬─┴──┘

│ └─ NOMDT ───┘ │

├─┬─ RESETKBD ─┬─┤

│ └─ NOKBD ───┘ │

├─┬─ ALARM ───┬──┤

│ └─ NOALARM ─┘ │

├─┬─ STARTPRT ─┬─┤

│ └─ NOPRT ────┘ │

└─┬─ NLCR ─┬─────┘

├─ 4�CR ─┤

├─ 64CR ─┤

└─ 8�CR ─┘

 �─┬───┬──────────────�─

└─ FOR ─┬─ ALL ─┬─ BUT ─────┬─ CURRENT ───────────────────┬─┘

│ └─ EXCEPT ──┘ │

├─── ALL ─┬───────────┬─ FIELDS ──────────────────┤

│ ├─ CORRECT ─┤ │

│ └─ ERROR ───┘ │

│ ┌───┐ │

├─↓─┬───────────────────┬─ DFLD (field-name) � ─┴─┤

│ ├─── ALL ← ─────────┤ │

│ └─ ALL ─┬─ BUT ────┬┘ │

 │ └─ EXCEPT ─┘ │

└─ DFLD (field-name) � ───────────────────────────┘

─�─┬──────────────┬───�─

├─ BACKSCAN ───┤

└─ NOBACKSCAN ─┘

─�─┬───────────────────────────────┬─┬────────────────────────┬───────────────�─

└─ OUTPUT DATA ─┬─ YES ───────┬─┘ └─ INPUT DATA ─┬─ YES ─┬─┘

├─ NO ────────┤ └─ NO ──┘

├─ ERASE ─────┤

└─ ATTRIBUTE ─┘

─�─┬─────────────────────┬──�─

├─ RIGHT ─┬─ JUSTIFY ─┘

└─ LEFT ──┘

─�─┬───────────────────────┬─┬──────────────────────┬─────────────────────────�─

├─ PAD (pad-character) ─┤ └─ EDIT ─┬─ ERROR ───┬─┘

└─ NOPAD ───────────────┘ └─ CORRECT ─┘

─�─┬────────────┬─┬────────────────────────────────┬──────────────────────────�─

├─ REQUIRED ─┤ └─ ERROR MESSAGE ─┬─ ACTIVE ───┬─┘

└─ OPTIONAL ─┘ └─ SUPPRESS ─┘

Chapter 6. Data Manipulation Language Statements 6-139

6.52 MODIFY MAP (DC/UCF)

─�─┬───────────────────────────────────────┬─ ; ──────────────────────────────��

 │ ┌───────────────────────┐│

└─ ATTRIBUTES ─↓─┬───────────────────┬─┴┘

├─ SKIP ────────────┤

├┬─ ALPHAMERIC ─┬───┤

│└─ NUMERIC ────┘ │

├┬─ PROTECTED ───┬──┤

│└─ UNPROTECTED ─┘ │

├┬─ DISPLAY ─┬──────┤

│├─ DARK ────┤ │

│└─ BRIGHT ──┘ │

├─ DETECT ──────────┤

├┬─ MDT ───┬────────┤

│└─ NOMDT ─┘ │

├┬─ BLINK ───┬──────┤

│└─ NOBLINK ─┘ │

├┬─ REVERSE_VIDEO ─┬┤

│└─ NORMAL_VIDEO ──┘│

├┬─ UNDERSCORE ───┬─┤

│└─ NOUNDERSCORE ─┘ │

├─ NOCOLOR ─────────┤

└┬─ BLUE ──────┬────┘

├─ RED ───────┤

├─ PINK ──────┤

├─ GREEN ─────┤

├─ TURQUOISE ─┤

├─ YELLOW ────┤

└─ WHITE ─────┘

Expansion of * in DFLD (field-name) *

� (─┬────────────┬─field-name─┬─────────────┬─)

└─ group-id ─┘ └─(subscript)─┘

 Parameters

map-name
Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in Chapter 5, “DML Precompiler-Directive Statements” on
page 5-1.

PERMANENT
Specifies that modifications will apply to all mapping mode I/O requests issued
until the program terminates or until a subsequent MODIFY MAP request
overrides the requested revisions. PERMANENT is the default.

TEMPORARY
Specifies that modifications will apply only to the next mapping mode I/O request
(that is, MAP IN, MAP OUT, or MAP OUTIN).

CURSOR AT
Identifies the screen location at which the cursor will be positioned during output
operations.

cursor-row cursor-column
Specifies a row and column on the terminal screen to which the cursor will be
moved. Cursor-row is either the symbolic name of a FIXED BINARY(15)
field that contains the row value or the value itself expressed as a numeric
constant. Cursor-column is either the symbolic name of a FIXED

6-140 CA-IDMS DML Reference — PL/I

6.52 MODIFY MAP (DC/UCF)

BINARY(15) field that contains the column value or the value itself expressed
as a numeric constant.

DFLD (field-name)
Specifies that the cursor will be moved to the first position in the specified
field. Field-name must be the name of a map field.

WCC
Specifies the write-control-character (WCC) options requested for the output
operation.

Note: If a MODIFY MAP request alters any WCC option, the system resets
unspecified options to the following values:

 ■ NOMDT

 ■ NOKBD

 ■ NOALARM

RESETMDT/NOMDT
Specifies whether the modified data tags (MDTs) for the map fields will be
reset (turned off) automatically when the map is displayed. When NOMDT is
in effect, the associated data is retransmitted to variable-storage data fields
during the next MAP IN request.

RESETKBD/NOKBD
Specifies whether the keyboard will (RESETKBD) or will not (NOKBD) be
unlocked automatically when the map is displayed.

ALARM/NOALARM
Specifies whether the terminal audible alarm (if installed) will sound
automatically when the map is displayed.

STARTPRT/NOPRT
Specifies (for 3280-type printers only) whether the contents of the terminal
buffer will be printed automatically when the data has been transmitted to the
terminal.

NLCR/40CR/64CR/80CR
Specifies the characters-per-line formatting for 3280-type printer output and is
meaningful only if the STARTPRT option has been specified.

NLCR
Specifies that no line formatting will be performed on the printer output.
Printing will begin on a new line only if the printer encounters new line
(NL) and carriage control (CR) characters.

40CR
Specifies that the contents of the 3280-type printer buffer will be printed
at 40 characters per line.

64CR
Specifies that the contents of the 3280-type printer buffer will be printed
at 64 characters per line.

Chapter 6. Data Manipulation Language Statements 6-141

6.52 MODIFY MAP (DC/UCF)

80CR
Specifies that the contents of the 3280-type printer buffer will be printed
at 80 characters per line.

FOR
Specifies the map fields to be modified or excluded from modification

ALL BUT CURRENT
Modifies all fields except the current field. The current field is the map field
that was referenced in the last MODIFY MAP or INQUIRE MAP request
issued by the program. However, if that request referenced a list of fields
rather than a single map field, no currency exists and all map fields are
modified.

ALL CORRECT/ERROR FIELDS
Modifies either all fields found to be correct or all fields found to be in error
during automatic editing or by a user-written edit module.

If either ALL CORRECT FIELDS or ALL ERROR FIELDS is specified,
automatic editing must be enabled for the map.

ALL/ALL BUT DFLD (field-name)
Explicitly specifies the fields to be modified or excluded from modification.
DFLD (field-name) names the map fields to be modified or excluded from
modification. Field-name must be a map field. Multiple DFLD specifications
come from only one record and must be separated by at least one blank.
Field names that are not unique within the program must be qualified with the
name of the associated record. Likewise, multiply-occurring fields must be
qualified with the appropriate subscripts. Multiple DFLDs are separated by at
least one blank (for example, HOSPITAL_CLAIM.DIAGNOSIS_0430(1)
HOSPITAL_CLAIM.DIAGNOSIS_0430(2)
HOSPITAL_CLAIM.DIAGNOSIS_0430(3)).

ALL
Specifies that all named map fields will receive the requested
modifications. ALL is the default.

ALL BUT
Specifies that all map fields except those named will receive the
requested modifications.

BACKSCAN/NOBACKSCAN
Indicates whether the system is to backscan the specified fields to remove
trailing blanks before performing a mapout operation. If BACKSCAN is
specified, only characters up to the last nonblank will be sent to the terminal;
fields remaining on the screen will contain whatever characters were present
before the MAP OUT or MAP OUTIN request was issued. If the MAP OUT
or MAP OUTIN request specifies the ERASE option, the system erases the
contents of all terminal data fields.

OUTPUT DATA YES/NO/ERASE/ATTRIBUTE
Specifies whether map fields will be set to the value of the corresponding
variable-storage data fields (YES), left unchanged (NO), or erased (ERASE),

6-142 CA-IDMS DML Reference — PL/I

6.52 MODIFY MAP (DC/UCF)

or whether only the attribute byte (ATTRIBUTE) is transmitted during an
output operation.

INPUT DATA YES/NO
Specifies whether map fields will be moved automatically to the
corresponding variable-storage data fields during an input operation.

RIGHT/LEFT JUSTIFY
Indicates whether the variable-storage fields should be right- or left-justified
on input.

PAD (pad-character)/NOPAD
Indicates whether variable-storage data fields will be padded on input.

PAD (pad-character)
Pads the field on the right (if right justified) or left (if left justified) with
the specified character. Pad-character can be the symbolic name of the
field (CHAR(1)) containing the pad character, or the pad character itself
enclosed in single quotation marks.

NOPAD
Does not pad the fields.

EDIT ERROR/CORRECT
Explicitly sets the error flag on (ERROR) or off (CORRECT) for the
specified map fields. If this parameter is specified, automatic editing must be
enabled for the map.

The ability to set the error flag enables programs to perform their own editing
and validation in addition to that provided by the automatic editing feature.
On a MAPOUT operation, if any field is flagged to be in error, then for all
fields (both correct and incorrect) only attribute bytes are transmitted; no data
is moved from program variable storage to the screen.

REQUIRED/OPTIONAL
Indicates whether the terminal operator will be required to enter data in the
specified map fields. An error results on mapin if REQUIRED is specified
and the terminal operator fails to enter data in a required field.

If this parameter is specified, automatic editing must be enabled for the map
and for the specified map fields.

ERROR MESSAGE ACTIVE
Enables display of the error message associated with the field. Typically, you
enable display of an error message only after specifying ERROR MESSAGE
SUPPRESS for the map in a previous MODIFY MAP PERMANENT
statement.

ERROR MESSAGE SUPPRESS
Disables display of the error message associated with the field. When the
map is redisplayed because of errors, the error message defined for the map
field will not be displayed even if the field contains edit errors.

Use of this parameter allows you flexibility in handling error messages. For
instance, you can code a data validation module to suppress a map field's

Chapter 6. Data Manipulation Language Statements 6-143

6.52 MODIFY MAP (DC/UCF)

default error message to enable a different error message to be displayed for
that field.

ATTRIBUTES
Indicates the 3270- and 3279-type terminal display attributes for the specified map
fields. If multiple attributes are specified, they must be separated by at least one
blank. Only the named attributes will be modified in the map's MRB.

SKIP
Indicates that the cursor will be repositioned automatically over the map fields
to the next unprotected field. If SKIP is specified, the specified map fields
are assigned the NUMERIC and PROTECTED attributes (described below)
automatically.

ALPHAMERIC/NUMERIC
Indicates whether the data input to the map fields by the terminal operator can
be alphanumeric (any character on the 3270 keyboard) or numeric. If the
terminal does not have the numeric lock option, a specification of NUMERIC
is ignored.

PROTECTED/UNPROTECTED
Indicates whether the specified map fields will be protected from data entry or
will be available for data entry or modification by the terminal operator.
UNPROTECTED cannot be specified if SKIP has been specified.

DISPLAY/DARK/BRIGHT
Indicates whether the specified map fields will be displayed in normal
(DISPLAY) or bright (BRIGHT) intensity or will not be displayed (DARK).
DARK cannot be specified if DETECT has been specified.

DETECT
Indicates whether the specified map fields will be detectable by a light pen.
All fields assigned the BRIGHT attribute are automatically detectable by a
light pen.

MDT/NOMDT
Indicates whether the modified data tag will (MDT) or will not (NOMDT) be
set automatically for the map fields when displayed.

BLINK/NOBLINK
Indicates (3279s only) whether the specified map fields will be displayed with
blinking characters.

REVERSE_VIDEO/NORMAL_VIDEO
Indicates (3279s only) whether the specified map fields will be displayed in
reverse video (background and character colors reversed) or in normal video.

UNDERSCORE/NOUNDERSCORE
Indicates (3279s only) whether the specified map fields will be displayed with
underlined characters.

NOCOLOR
Specifies (for 3279s only) that the map fields will not be displayed with color
attributes.

6-144 CA-IDMS DML Reference — PL/I

6.52 MODIFY MAP (DC/UCF)

BLUE/RED/PINK/GREEN/TURQUOISE/YELLOW/WHITE
Indicates (3279s only) that the specified map fields will be displayed with one
of the seven available color attributes.

Note: UNDERSCORE, REVERSE_VIDEO, and BLINK are mutually exclusive;
that is, they can be specified in conjunction with other attributes but
cannot be specified with each other. For example, neither
REVERSE_VIDEO nor UNDERSCORE can be assigned to a field for
which the BLINK attribute has been defined.

Example: The following statement positions the cursor at EMP_ID_0415 and
prohibits the terminal operator from entering data in any field except EMP_ID_0415
and DEPT_ID_0415:

MODIFY MAP (EMPMAPLR) TEMPORARY

CURSOR AT DFLD (EMP_ID_�415)

FOR ALL BUT DFLD (EMP_ID_�415) DFLD (DEPT_ID_�415)

 ATTRIBUTES PROTECTED;

The following statement sets the edit flag on for the TASK_CODE_01 field, thereby
overriding automatic editing and error handling for the next mapin request:

MODIFY MAP (EMPMAPLR) TEMPORARY

FOR DFLD (TASK_CODE_�1)

 EDIT ERROR;

Status codes: Upon completion of the MODIFY MAP function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4629 An invalid parameter has been passed from the program.

4644 The map field is not in the specified map; a possible cause is a
reference to an invalid map field subscript.

4656 The referenced map contains no data fields.

Chapter 6. Data Manipulation Language Statements 6-145

6.53 MODIFY RECORD

 6.53 MODIFY RECORD

The MODIFY RECORD statement replaces element values of the specified record
occurrence in the database with new element values defined in program variable
storage.

Steps before using MODIFY RECORD: Before executing the MODIFY
RECORD statement, satisfy the following conditions:

■ Ready all areas affected either implicitly or explicitly in one of the update usage
modes (see 6.61, “READY” on page 6-164 later in this chapter).

■ Establish the specified record as current of run unit. If the record that is current
of run unit is not an occurrence of the specified record, an error condition results.

■ The values of all elements defined for the specified record in the program's
subschema view must be in variable storage. If the MODIFY RECORD statement
is not preceded by an OBTAIN statement, you must initialize the appropriate
values. The best practice, however, is to precede MODIFY RECORD with an
OBTAIN statement to ensure that all the elements in the modified record are
present in variable storage.

Modifying CALC- and sort-control elements: The following special
considerations apply to modification of CALC- and sort-control elements:

■ If modification of a CALC- or sort-control element will violate a
duplicates-not-allowed option, the record is not modified and an error condition
results.

■ If a CALC-control element is modified, successful execution of the MODIFY
RECORD statement enables the record to be accessed on the basis of its new
CALC-key value. The db-key of the specified record is not changed.

■ If a sort-control element is to be modified, the sorted set in which the specified
record participates must be included in the subschema invoked by the program. A
record occurrence that is a member of a set not defined in the subschema can be
modified if the undefined set is not sorted.

■ If any of the modified elements in the specified record are defined as sort-control
elements for any set occurrence in which that record is currently a member, the set
occurrence is examined. If necessary, the specified record is disconnected and
reconnected in the set occurrence to maintain the set order specified in the
schema.

Considerations for native VSAM users: The following special considerations
apply to the modification of records in native VSAM datasets:

■ The length of a record in an entry-sequenced dataset (ESDS) cannot be changed
even if the records are variable length.

■ The prime key for a key-sequenced dataset (KSDS) cannot be modified.

6-146 CA-IDMS DML Reference — PL/I

6.53 MODIFY RECORD

Currency: The specified record must be established as current of run unit.

Following successful execution of the MODIFY RECORD statement, the modified
record becomes the current record of run unit, its record type, its area, and all sets in
which it participates as member or owner.

 Syntax

��─── MODIFY RECORD (record-name); ───��

 Parameter

record-name
Defines the named record occurrence, as specified in program variable storage.
Record-name must specify a record type included in the subschema.

Example: The following example illustrates the steps involved in modifying an
occurrence of the EMPLOYEE record. Assume that the employee address is to be
changed.

1. Retrieve the desired EMPLOYEE record, moving its contents to variable storage:

EMP_ID_�415 = EMP_ID_IN;

OBTAIN CALC RECORD (EMPLOYEE);

2. Update the value of the EMP_ADDRESS_0415 field by moving the new address
into the proper location in the EMPLOYEE record:

EMP_ADDRESS_�415 = NEW_ADDRESS;

3. Issue a MODIFY RECORD statement to return all data items in the EMPLOYEE
record to the database:

MODIFY RECORD (EMPLOYEE);

Status codes: Upon completion of the MODIFY RECORD function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0804 The OCCURS DEPENDING ON item is less than 0 or greater than
the maximum number of occurrences of the control element.

0805 Modification of the record would violate a duplicates-not-allowed
option for a CALC record, a sorted set, or an index set.

0806 Currency has not been established for the named record.

0808 The specified record cannot be found. The record name has
probably been misspelled.

0809 The named record's area has not been readied in one of the update
usage modes.

Chapter 6. Data Manipulation Language Statements 6-147

6.53 MODIFY RECORD

Status code Meaning

0810 The subschema specifies an access restriction that prohibits
modification of the named record.

0811 There is insufficient space to hold the modified variable-length
record occurrence.

0813 A current record of run unit has not been established or has been
nullified by a previous ERASE statement.

0818 The record has not been bound.

0820 The current record of run unit is not the same type as the named
record.

0821 An area other than the area of the named record has been readied
with an incorrect usage mode.

0825 No current record of set type has been established.

0833 At least one sorted set in which the named record participates has
not been included in the subshema.

0855 An invalid length has been defined for a variable length record.

0860 A record occurrence has been encountered whose type is
inconsistent with the set named in the ERROR_SET field of the
IDMS-DB communications block; probable causes include: a
broken chain and improper database description.

0883 Either the length of a record in a native VSAM ESDS has been
changed or a prime key in a native VSAM KSDS has been
modified.

6-148 CA-IDMS DML Reference — PL/I

6.54 MODIFY RECORD (LRF)

6.54 MODIFY RECORD (LRF)

The MODIFY RECORD statement changes field values in an existing logical-record
occurrence. LRF uses the field values present in the variable-storage location reserved
for the logical record to update the appropriate database records. You can optionally
specify an alternative variable storage location from which the changed field values are
to be obtained.

 Syntax

��─── MODIFY RECORD (logical-record-name) ────────────────────────────────────�

 �─┬──────────────────────────────────────┬─┬──────────────────────────────┬──�

└─ FROM (alt-logical-record-location) ─┘ └─ WHERE (boolean-expression) ─┘

 �─┬──┬─ ; ─────────────────��

└─ ON LR_STATUS (path-status) imperative-statement ─┘

 Parameters

logical-record-name
Defines the named logical-record occurrence, as specified in program variable
storage. Unless the FROM clause is specified (see below), the field values used
to update the database are taken from the area in program variable storage
reserved for the named logical record. Logical-record-name must specify a logical
record defined in the subschema.

FROM (alt-logical-record-location)
Names an alternative variable-storage location from which the field values used to
perform the requested modification are to be obtained. When modifying a logical
record that was retrieved into an alternative location in variable storage, the
FROM clause should name the same location specified in the OBTAIN request. If
the FROM clause is included in the MODIFY RECORD statement,
alt-logical-record-location must identify a record location defined in program
variable storage.

WHERE boolean-expression
Specifies the selection criteria to be applied to the named logical record. For
details on coding the WHERE clause, see 6.78, “Logical-record clauses (WHERE
and ON)” on page 6-215 at the end of this chapter.

ON LR_STATUS (path-status) imperative-statement
Specifies the action to be taken if path-status is returned to the LR_STATUS field
in the LRC block. Path-status must be a 1- to 16-character alphanumeric value.
For details on coding this clause, see 6.78, “Logical-record clauses (WHERE and
ON)” on page 6-215 at the end of this chapter.

Example: The following example illustrates the steps taken to modify an occurrence
of the EMP_SKILL_LR logical record. Assume that the skill level for employee 120
is to be upgraded from 02 (COMPETENT_0425) to 03 (PROFICIENT_0425).

1. Retrieve the desired logical-record occurrence:

Chapter 6. Data Manipulation Language Statements 6-149

6.54 MODIFY RECORD (LRF)

OBTAIN FIRST RECORD (EMP_SKILL_LR)

WHERE (EMP_ID_�415 = '�12�'

AND SKILL_ID_�455 = '361�'

AND SKILL_LEVEL_�425 = '�2');

2. Update the SKILL_LEVEL_0425 field:

SKILL_LEVEL_�425 = '�3';

3. Issue the MODIFY RECORD (LRF) statement for the updated EMP_SKILL_LR
logical record:

MODIFY RECORD (EMP_SKILL_LR);

LRF retrieves the EMP_SKILL_LR logical record where EMP_ID_0415 = '0120',
SKILL_ID_0455 = '3610', and SKILL_LEVEL_0425 = '02'. The EXPERTISE
occurrence represents the only data physically modified in the database.

EMP_SKILL_LR

EMPLOYEE EXPERTISE SKILL

12� �4 762�

12� �3 371�

12� �2 (now �3) 361�

6-150 CA-IDMS DML Reference — PL/I

6.55 OBTAIN (LRF)

 6.55 OBTAIN (LRF)

The OBTAIN statement retrieves the named logical record and places it in the
variable-storage location reserved for that logical record. The OBTAIN statement can
be issued to retrieve a single logical record, or it can be issued in iterative logic to
retrieve all logical records that meet criteria specified in the WHERE clause.
Additionally, the OBTAIN statement can specify that the retrieved logical record is to
be placed into an alternative variable storage location.

 Syntax

��─── OBTAIN ─┬──────────┬─ RECORD (logical-record-name) ─────────────────────�

├─ FIRST ──┤

└─ NEXT ← ─┘

 �─┬──────────────────────────────────────┬─┬──────────────────────────────┬──�

└─ INTO (alt-logical-record-location) ─┘ └─ WHERE (boolean-expression) ─┘

 �─┬──┬─ ; ─────────────────��

└─ ON LR_STATUS (path-status) imperative-statement ─┘

 Parameters

FIRST
Retrieves the first occurrence of the logical record. OBTAIN FIRST is typically
used to retrieve the first in a series of logical-record occurrences following the
iterative retrieval of a different series of logical-record occurrences.

NEXT
Retrieves a (subsequent) occurrence of the named logical record, in the order
specified by the DBA in the path. OBTAIN NEXT is typically issued in iterative
logic to retrieve a series of logical-record occurrences (possibly including the
first).

When LRF receives repeated OBTAIN NEXT commands, it replaces field values
in program variable storage with new values obtained through repeated access to
the appropriate database records, thereby supplying the program with new
occurrences of the desired logical record.

If an OBTAIN FIRST statement is followed by an OBTAIN NEXT statement to
retrieve a series of occurrences of the same logical record, the OBTAIN
statements must direct LRF to the same path. For this reason, you must ensure
that the selection criteria specified in the WHERE clause that accompanies the
OBTAIN FIRST and OBTAIN NEXT statements describe the same attributes of
the desired logical record.

If the program issues an OBTAIN NEXT statement without issuing an OBTAIN
FIRST, or if the last path status returned for the path was LR_NOT_FOUND,
LRF interprets the OBTAIN NEXT as OBTAIN FIRST. After LR_ERROR or a
DBA-defined path status, LRF does not interpret OBTAIN NEXT as OBTAIN
FIRST.

Chapter 6. Data Manipulation Language Statements 6-151

6.55 OBTAIN (LRF)

RECORD (Logical-record-name)
Defines the named logical record occurrence, as specified in program variable
storage. Logical-record-name must specify a logical record defined in the
subschema.

INTO (alt-logical-record-location)
Specifies an alternative location in variable storage into which LRF will place the
retrieved logical record. Any subsequent MODIFY, STORE, or ERASE
statements for a logical record placed in alt-logical-record-location should name
that area as the one from which LRF will obtain the data to be used to update the
logical record.

WHERE (boolean-expression)
Specifies the selection criteria to be applied to the named logical record. For
details on coding this clause, see 6.78, “Logical-record clauses (WHERE and
ON)” on page 6-215 at the end of this chapter.

ON LR_STATUS (path-status) imperative-statement
Specifies the action to be taken if path-status is returned to the LR_STATUS field
in the LRC block. Path-status must be a 1- to 16-character alphanumeric value.
For details on coding this clause, see 6.78, “Logical-record clauses (WHERE and
ON)” on page 6-215 at the end of this chapter.

Example: The following example illustrates the use of the OBTAIN NEXT
statement to retrieve a series of logical-record occurrences. The program issues the
OBTAIN NEXT statement iteratively to retrieve the first and all subsequent
occurrences of the EMP_JOB_LR logical record for all employees in the specified
department.

GET_AN_ORDER: PROC OPTIONS(MAIN);

DEPT_ID_�41� = DEPT_ID_IN;

OBTAIN NEXT RECORD (EMP_JOB_LR)

WHERE (DEPT_ID_�41� = DEPT_ID_�41� OF LR);

IF LR_STATUS = 'LR_ERROR' THEN

 CALL ERROR_PROCESSING;

IF LR_STATUS = 'LR_NOT_FOUND' THEN

 CALL END_PROCESSING;

 .

 .

 .

GO TO GET_AN_ORDER;

 END GET_AN_ORDER;

The following figure illustrates the information retrieved by each OBTAIN NEXT
statement.

6-152 CA-IDMS DML Reference — PL/I

6.55 OBTAIN (LRF)

The EMP_JOB_LR logical record consists of DEPARTMENT, OFFICE, EMPLOYEE,
and JOB information.

Chapter 6. Data Manipulation Language Statements 6-153

6.56 POST (DC/UCF)

 6.56 POST (DC/UCF)

The POST statement alters an event control block (ECB) either by posting it to
indicate completion of an event upon which another task is waiting, or by clearing it to
an unposted status.

Note: Programs posting and waiting on ECBs are responsible for clearing ECBs
before issuing subsequent WAIT requests.

 Syntax

��─── POST ─┬─ EVENT (ecb-name) ────────────────┬─ ; ─────────────────────────��

└─ EVENT NAME (ecb-id) ─┬─────────┬─┘

└─ CLEAR ─┘

 Parameters

EVENT (ecb)
Identifies the ECB to be posted. Ecb is the symbolic name of a user-defined area
composed of three binary fullword fields that contain the ECB. Program-allocated
ECBs are cleared by setting ecb to zero.

EVENT NAME (ecb-id)
Specifies the 4-character symbolic ID of the ECB to be posted or cleared. Ecb-id
is either the symbolic name of a user-defined field that contains the ECB ID, or
the ID itself enclosed in single quotation marks.

CLEAR
Specifies that the ECB identified by ecb-id is cleared to an unposted status.

Example: The following example posts the event whose ECB identifier is in the
FOUND_ECB field and to clear the ECB to an unposted status:

 POST

EVENT NAME (FOUND_ECB)

 CLEAR;

Status codes: Upon completion of the POST function, the only possible value in
the ERROR_STATUS field of the IDMS-DC communications block is 0000.

6-154 CA-IDMS DML Reference — PL/I

6.57 PUT QUEUE (DC/UCF)

6.57 PUT QUEUE (DC/UCF)

The PUT QUEUE statement stores a queue record in either the DDLDCRUN or the
DDLDCQUE area of the data dictionary. The DC/UCF system assigns an ID to the
queue record and places it at the beginning or end of its associated queue.

 Syntax

��─── PUT QUEUE ─┬─────────────────┬─┬──────────┬─────────────────────────────�

└─ ID (queue-id) ─┘ ├─ FIRST ─┤

└─ LAST ← ─┘

 �─── FROM (queue-data-location) ─┬─ TO (end-queue-data-location) ─┬──────────�

└─ LENGTH (queue-data-length) ───┘

 �─┬──┬───────────────────────�

└─ RETURN RECORD ID INTO (return-queue-record-id) ─┘

 �─┬──────────────────────────────────────┬─ ; ───────────────────────────────��

└─ RETENTION (queue-retention-period) ─┘

 Parameters

ID (queue-id)
Directs the queue record to a previously defined queue. Queue-id is either the
symbolic name of a user-defined alphanumeric field that contains the 1- to
16-character ID, or the ID itself enclosed in single quotation marks. If a queue ID
is not specified, a null ID of 16 blanks is assumed.

FIRST/LAST
Specifies whether the queue record is to be placed at the beginning or end of the
queue. The default is LAST.

FROM (queue-data-location)
Specifies the program variable-storage entry associated with the data to be stored
in the queue record. Queue-data-location is the symbolic name of a user-defined
field.

TO (end-queue-data-location)
Indicates the end of the program variable-storage entry that contains the data
to be stored in the queue and is specified following the last data-item entry in
queue-data-location. End-queue-data-location is the symbolic name of a
user-defined dummy byte field or a field that contains a data item not
associated with the queue record.

LENGTH (queue-data-length)
Explicitly defines the length, in bytes, of the area that contains the data to be
stored in the queue record. Queue-data-length is either the symbolic name of
a user-defined field that contains the length or the length itself expressed as a
numeric constant.

RETURN RECORD ID INTO (return-queue-record-id)
Specifies the location in the program to which the system will return the system
assigned ID of the queue record. Return-queue-record-id is the symbolic name of

Chapter 6. Data Manipulation Language Statements 6-155

6.57 PUT QUEUE (DC/UCF)

a user-defined FIXED BINARY(31) field. The returned ID is used to reference
the queue record in subsequent GET QUEUE and DELETE QUEUE statements.

RETENTION (queue-retention-period)
Specifies the time, in days, that the system will retain the queue in the data
dictionary. At system startup, queues having expired retention periods are deleted
automatically by the system. The retention period begins when the first record is
stored in the queue.

Queue-retention-period is either the symbolic name of a user-defined fixed binary
field that contains the retention period or the retention period itself expressed as a
numeric constant in the range 0 through 255. A retention period of 255 indicates
that the queue is never to be deleted automatically by the system. The specified
retention period takes precedence over retention periods associated with previously
defined queues. The RETENTION parameter is ignored if the record being
allocated is not the first record in the queue.

Example: The following example allocates a queue record in the beginning of the
RES_Q queue, return the ID of the record to the Q_REC_ID field, and retain the
queue for 45 days:

 PUT QUEUE

 ID ('RES-Q')

 FIRST

FROM (NEW_RES) TO (END_NEW_RES)

RETURN RECORD ID INTO (Q_REC_ID)

 RETENTION (45);

Status codes: Upon completion of the PUT QUEUE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4407 Either the queue upper limit was reached or an I/O error occurred
during processing.

4431 The parameter list is invalid; under DC-BATCH, this status
indicates that the specified record length exceeds the maximum
length based on the packet size.

4432 The derived length of the specified queue record is either zero or
negative.

6-156 CA-IDMS DML Reference — PL/I

6.58 PUT SCRATCH (DC/UCF)

6.58 PUT SCRATCH (DC/UCF)

The PUT SCRATCH statement stores or replaces a scratch record in the DDLDCSCR
area of the data dictionary. For new records, PUT SCRATCH generates an index
entry in a scratch area associated with the issuing task. If the scratch area does not
already exist, the system allocates it dynamically in the storage pool.

 Syntax

��─── PUT SCRATCH ─┬─────────────────────────────┬────────────────────────────�

└─ AREA ID (scratch-area-id) ─┘

 �── FROM (scratch-data-location) ─┬─ TO (end-scratch-data-location) ───────┬─�

└─ LENGTH (scratch-data-location-length)─┘

 �─┬───┬──────────────────────────�

└─ RECORD ID (scratch-record-id) ─┬───────────┬─┘

└─ REPLACE ─┘

 �─┬───┬─ ; ────────────────────────��

└─ RETURN RECORD ID INTO (scratch-record-id) ─┘

 Parameters

AREA ID (scratch-area-id)
Specifies the 1- to 8-character ID of the scratch area associated with the record
being allocated. Scratch-area-id is either the symbolic name of a user-defined
field that contains the ID or the ID itself enclosed in single quotation marks. If
AREA ID is not specified, an area ID of eight blanks is assumed.

FROM (scratch-data-location)
Specifies the data to be stored in the scratch record. Scratch-data-location is the
symbolic name of a user-defined program variable-storage entry that contains the
data.

TO (end-scratch-data-location)
Indicates the end of the data area to be stored in the scratch record and is
specified following the last data-item entry in scratch-data-location.
End-scratch-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
scratch data being stored.

LENGTH (scratch-data-location-length)
Defines the length, in bytes, of the data area. Scratch-data-location-length is
the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

RECORD ID (scratch-record-id)
Specifies the ID of the scratch record being stored. Scratch-record-id is either the
symbolic name of a user-defined FIXED BINARY(31) field that contains the ID
or the ID itself expressed as a numeric constant.

REPLACE
Specifies that the scratch record identified by scratch-record-id replaces an
existing scratch record. If REPLACE is specified and the scratch record identified

Chapter 6. Data Manipulation Language Statements 6-157

6.58 PUT SCRATCH (DC/UCF)

by scratch-record-id does not exist, the record is stored and a status value of 0000
is returned.

RETURN RECORD ID INTO (scratch-record-id)
Requests that the system return the automatically assigned ID of a scratch record
to the program. Return-scratch-record-id is the symbolic name of a user-defined
field into which the system will place the 4-byte scratch record ID.

Example: The following statement replaces the scratch record identified by
SCR_REC_ID with data in the WORK_PROC_AREA field:

 PUT SCRATCH

FROM (WORK_PROC_AREA) LENGTH (125)

RECORD ID (SCR_REC_ID) REPLACE;

Status codes: Upon completion of the PUT SCRATCH function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request to add a scratch record has been serviced successfully.

4305 The requested scratch record ID cannot be found.

4307 An I/O error has occurred during processing.

4317 The request to replace a scratch record has been serviced
successfully.

4322 The request to add a scratch record cannot be serviced because the
specified scratch record already exists in the scratch area and
REPLACE has not been specified.

4331 The parameter list is invalid.

4332 The derived length of the specified scratch record is either zero or
negative.

6-158 CA-IDMS DML Reference — PL/I

6.59 READ LINE FROM TERMINAL (DC/UCF)

6.59 READ LINE FROM TERMINAL (DC/UCF)

The READ LINE FROM TERMINAL statement requests a synchronous, line-by-line
transfer of data from the terminal to the issuing program.

 Syntax

��─── READ LINE FROM TERMINAL ─┬────────┬─┬──────────────┬────────────────────�

└─ ECHO ─┘ └─ NOBACKPAGE ─┘

 �─ INTO (input-data-location) ┬ TO (end-input-data-location) ──────────────┬─�

└ MAX LENGTH (input-data-location-max-length)┘

 �─┬───┬─ ; ────────────────────��

└─ RETURN LENGTH INTO (input-data-actual-length) ─┘

 Parameters

ECHO
Requests (for 3270-type devices only) that the system to save the line of data
being input in the current page (as displayed on the screen). If ECHO is not
specified, data entered will not be retained and, therefore, will not be available for
review by the terminal operator.

NOBACKPAGE
Requests (for 3270-type devices only) that the system not save previously input
pages in a scratch area. If NOBACKPAGE is specified, the terminal operator can
view only the current page of data. NOBACKPAGE is valid only with the first
input request in a line mode session.

INTO (input-data-location)
Indicates the program variable-storage entry reserved for the input data.
Input-data-location is the symbolic name of a user-defined field. The length of
the data area is determined by one of the following specifications:

TO (end-input-data-location)
Indicates the end of program variable storage reserved for the input data
stream and is specified following the last data-item entry in
input-data-location. End-input-data-location is the symbolic name of either a
user-defined dummy byte field or a field that contains a data item not
associated with the data area reserved for the input data stream.

MAX LENGTH (input-data-location-max-length)
Defines the length, in bytes, of the input data stream. Input-data-max-length
is either the symbolic name of a user-defined field that contains the length of
the data area, or the length itself expressed as a numeric constant.

If the input data stream is larger than the data area reserved in program
variable storage, the system truncates the data to fit the available space.

RETURN LENGTH INTO (input-data-actual-length)
Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic name of a user-defined field.

Chapter 6. Data Manipulation Language Statements 6-159

6.59 READ LINE FROM TERMINAL (DC/UCF)

If the data stream has been truncated, input-data-actual-length contains the
original length before truncation.

Example: The following statement reads the specified data from a 3270-type device
into the specified location in the program and echoes the input data on the screen:

READ LINE FROM TERMINAL

 ECHO

INTO (EMPL_DATA) TO (END_EMPL_DATA);

The following statement reads the specified data into the program without saving pages
associated with the line I/O session:

READ LINE FROM TERMINAL

 NOBACKPAGE

INTO (EMPL_DATA) MAX LENGTH (8)

RETURN LENGTH INTO (REC_DATA_LENGTH);

Status codes: Upon completion of the READ LINE FROM TERMINAL function,
the ERROR_STATUS field in the IDMS-DC communications block indicates the
outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4707 A logical or permanent I/O error has been encountered in the input
data stream.

4719 The input area specified for the return of data is too small; the
returned data has been truncated to fit the available space.

4731 The line request block (LRB) contains an invalid field, indicating a
possible error in the program's parameters.

4732 The derived length of the specified line input area is zero or
negative.

4738 The specified program variable-storage entry has not been allocated
as required. A prior GET STORAGE request must be issued.

4743 The line I/O session has been canceled; the terminal operator has
pressed CLEAR (3270s), ATTENTION (2741s), or BREAK
(teletypes).

6-160 CA-IDMS DML Reference — PL/I

6.60 READ TERMINAL (DC/UCF)

6.60 READ TERMINAL (DC/UCF)

The READ TERMINAL statement requests a synchronous or asynchronous basic mode
data transfer from the terminal to program variable storage.

 Syntax

��─── READ TERMINAL ─┬──────────┬───�

├─ WAIT ← ─┤

└─ NOWAIT ─┘

 �─┬──┬───────────────────────�

└─┬─ MODIFIED ─┬─ FROM POSITION (screen-position) ─┘

└─ BUFFER ───┘

 �── INTO (input-data-location) ─┬─ TO (end-input-data-location) ───────┬─────�

└─ MAX LENGTH (input-data-max-length) ─┘

 �─┬───┬─ ; ────────────────────��

└─ RETURN LENGTH INTO (input-data-actual-length) ─┘

 Parameters

WAIT
Specifies that the read operation will be synchronous; the issuing task will
automatically relinquish control to the system and must wait for completion of the
read operation before processing can continue. WAIT is the default.

NOWAIT
Specifies that the read operation will be asynchronous; the issuing task will
continue executing.

Note: If NOWAIT is specified, the program must issue a CHECK TERMINAL
request (described later in this chapter) before performing any other I/O
operations.

MODIFIED/BUFFER
Requests (for 3270-type devices only) that the system transfer data to the
application program without requiring the terminal operator to signal completion
of data entry.

MODIFIED
Reads all modified fields in the terminal buffer into variable storage.

BUFFER
Executes a READ BUFFER command that reads the entire contents of the
terminal buffer into variable storage.

FROM POSITION (screen-position)
Defines the buffer address (screen position) at which the read will start.
Screen-position is either the symbolic name of a user-defined FIXED
BINARY(31) field or the address itself enclosed in single quotation marks.

INTO (input-data-location)
Specifies the data area reserved for the input data stream. This parameter is not
specified for asynchronous requests that use the CHECK TERMINAL statement to

Chapter 6. Data Manipulation Language Statements 6-161

6.60 READ TERMINAL (DC/UCF)

allocate storage for the input buffer. Input-data-location is the symbolic name of
a user-defined field.

If the input data stream is larger than the specified data area, the system truncates
the data to fit the available space.

TO (end-input-data-location)
Indicates the end of the data area reserved for the input data stream and is
specified following the last data-item entry in input-data-location.
End-input-data-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the data area
reserved for the input data stream.

MAX LENGTH (input-data-max-length)
Defines the length, in bytes, of the data area reserved for the input data
stream. Input-data-max-length is either the symbolic name of a user-defined
field that contains the length of the data area, or the length itself expressed as
a numeric constant.

RETURN LENGTH INTO (input-data-actual-length)
Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic name of a user-defined field.
If the data stream has been truncated, input-data-actual-length contains the
original length before truncation.

Example: The following statement illustrates a basic mode request to read data from
the terminal to the specified location in variable storage:

 READ TERMINAL

 WAIT

INTO (TERM_LINE) TO (END_TERM_LINE);

Status codes: Upon completion of the READ TERMINAL function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

000 The request has been serviced successfully.

4519 The input area specified for the return of data to the issuing
program is too small; the returned data has been truncated to fit the
available space.

4527 A permanent I/O error has occurred during processing.

4528 The dial-up line for the terminal has been disconnected.

4531 The terminal request block (TRB) contains an invalid field,
indicating a possible error in the program's parameters.

4532 The derived length of the specified input data area is zero or
negative.

6-162 CA-IDMS DML Reference — PL/I

6.60 READ TERMINAL (DC/UCF)

Status code Meaning

4535 Storage for the input buffer cannot be acquired because the
specified program variable-storage entry has been previously
allocated; no I/O has been performed.

4539 The terminal device associated with the issuing task is out of
service.

Chapter 6. Data Manipulation Language Statements 6-163

6.61 READY

 6.61 READY

The READY statement prepares a database area for access by DML functions and
specifies that area's usage mode.

The DBA can specify default usage modes in the subschema. Run units that use such
a subschema need not issue any READY statements; the areas are automatically
readied in the predefined usage modes. However, if a run unit issues a READY
statement for one area, it must issue READY statements for all areas that it will
access.

PROTECTED and EXCLUSIVE options: The specified usage mode can be
qualified with a PROTECTED option to prevent concurrent update or an EXCLUSIVE
option to prevent concurrent use of areas by other run units executing under the
CA-IDMS/DB central version. Each area can be readied in its own usage mode.
Usage modes can be changed by executing a FINISH statement (see 6.37, “FINISH”
on page 6-89), then starting a new run unit by issuing a BIND RUN_UNIT statement,
the appropriate BIND RECORD statements, and a READY statement specifying the
new usage mode.

Ready areas individually or together: When the run unit readies database areas,
all areas can be readied with a single READY statement or each area to be accessed
can be readied individually. All areas affected explicitly or implicitly by the DML
statements issued by the run unit must be readied. Other areas included in the
subschema need not be readied.

Position of READY statements: The READY statement can appear anywhere
within an application program; however, to avoid runtime deadlock, the best practice is
to ready all areas before issuing any other DML statements. A BIND RUN_UNIT
statement must be processed successfully before a READY statement can be issued.

You can use the READY statement in both navigational and Logical Record Facility
(LRF) environments.

 Syntax:

��─── READY ─┬────────────────────┬─┬──────────────────────────────────┬─ ; ──��

└─ AREA (area-name) ─┘ └─┬─────────────┬─┬─ RETRIEVAL ← ─┬┘

├─ PROTECTED ─┤ └─ UPDATE ──────┘

└─ EXCLUSIVE ─┘

 Parameters

AREA (area-name)
Opens only the specified area. Area-name must be an area included in the
subschema. If area-name is not specified, the READY statement opens all areas
included in the subschema.

6-164 CA-IDMS DML Reference — PL/I

6.61 READY

RETRIEVAL
Opens the area for retrieval only and allows other concurrently executing run
units to open the same area in any usage mode other than one that is
exclusive. RETRIEVAL is the default.

UPDATE
Opens the area for both retrieval and update and allows other concurrently
executing run units to open the same area in any usage mode other than one
that is exclusive or protected.

PROTECTED
Prevents concurrent update of the area by run units executing under the same
central version. Once a run unit has readied an area with the PROTECTED
option, no other run unit can ready that area in any UPDATE usage mode until
the first run unit releases it by means of the FINISH statement (see 6.37,
“FINISH” on page 6-89 earlier in this chapter). A run unit cannot ready an area
with the PROTECTED option if another run unit has readied the area in UPDATE
usage mode or with the EXCLUSIVE option.

If neither PROTECTED nor EXCLUSIVE is specified, the default usage mode of
shared is invoked.

If a READY statement would result in a usage mode conflict for an area, while
running under the CA-IDMS/DB central version, the run unit issuing the READY
is placed in a wait state on the first functional database call.

EXCLUSIVE
Prevents concurrent use of the area by any other run unit executing under the
CA-IDMS/DB central version. Once a run unit has readied an area with the
EXCLUSIVE option, no other run unit can ready that area in any usage mode
until the first run unit releases it.

If neither PROTECTED nor EXCLUSIVE is specified, the default usage mode of
shared is invoked.

If a READY statement would result in a usage mode conflict for an area, while
running under the CA-IDMS/DB central version, the run unit issuing the READY
is placed in a wait state on the first functional database call.

Note: Modification statements involving areas opened in one of the update usage
modes are not valid if they affect sets that include records in an area
opened in one of the retrieval usage modes.

Example: The following statement readies all subschema areas in a usage mode of
PROTECTED UPDATE:

READY PROTECTED UPDATE;

Status codes: Upon completion of the READY function, the ERROR_STATUS
field in the IDMS-DB communications block indicates the outcome of the operation:

Chapter 6. Data Manipulation Language Statements 6-165

6.61 READY

Status code Meaning

0000 The request has been serviced successfully.

0910 The subschema specifies an access restriction that prohibits
readying the area in the specified usage mode.

0923 The named area is not in the subschema.

0928 The run unit has attempted to ready an area that has been readied
previously.

0966 The area is not available in the requested usage mode. If running
in local mode, the area is locked against update. If running under
the central version, either the area is offline to the central version,
or an update usage mode was requested and the area is in retrieval
mode to the central version.

0970 The database will not ready properly; a JCL error is the probable
cause.

0971 The page group/page range for the area being readied could not be
found in the DMCL.

0978 A READY has been issued after the first functional call; it is
recommended that all areas be readied before the first functional
call is issued.

6-166 CA-IDMS DML Reference — PL/I

6.62 RETURN (DC/UCF)

 6.62 RETURN (DC/UCF)

The RETURN statement retrieves the database key for an indexed record without
retrieving the record itself, thus establishing currency in the indexed set. The record's
symbolic key is moved into the data fields within the record in program variable
storage. The contents of all non-key fields for the record are unpredictable after the
execution of the RETURN verb. Optionally, the program can indicate that the
symbolic key can be moved into some other specified variable storage location.

Current of index is established by:

■ Successful execution of the RETURN statement, which sets current of index at the
index entry from which the database key was retrieved.

■ A status code of 1707 (end of index), which sets currency on the index owner.
The DBMS returns the owner's database key.

■ A status code of 1726 (index entry not found), which sets current of index as
follows:

– Between the two entries that are higher and lower than the specified value

– After the highest entry, if the specified value is higher than all index entries

– Before the lowest entry, if the specified value is lower than all index entries

You can use the RETURN statement in navigational and Logical Record Facility
(LRF) environments.

Note: The DML precompiler views an incorrectly formatted RETURN statement as a
PL/I RETURN function and does not flag the error. The incorrect RETURN
DML statement is passed to the PL/I precompiler without expansion into a
CALL statement, causing compile-time errors.

 Syntax

��─── RETURN CURRENCY SET (index-set-name) ─┬─────────┬───────────────────────�

├─ FIRST ─┤

├─ LAST ──┤

├─ NEXT ──┤

└─ PRIOR ─┘

�─── INTO (db-key-field)─┬─────────────────────────────────┬──────────── ; ──��

└─ KEY INTO (symbolic-key-field) ─┘

 Parameters

RETURN CURRENCY SET (index-set-name)
Identifies the indexed set from which the specified database key is to be returned.

FIRST
Retrieves the database key for the first index entry.

LAST
Retrieves the database key for the last index entry.

Chapter 6. Data Manipulation Language Statements 6-167

6.62 RETURN (DC/UCF)

NEXT
Retrieves the database key for the index entry following current of index. If
the current of index is the last entry, a status code of 1707 (end of index) is
returned.

PRIOR
Retrieves the database key for the index entry preceding current of index. If
the current of index is the first entry, a status code of 1707 (end of index) is
returned.

INTO (db-key)
Identifies the field to which the database key is returned. Db-key is the symbolic
name of a user-defined FIXED BINARY(31) field.

KEY INTO (symbolic-key)
Saves the symbolic key (CALC, sort, or index) of the specified record.
Symbolic-key is the name of a user-defined alphanumeric field into which the
symbolic key of the specified record will be returned. Symbolic-key must be large
enough to contain the largest contiguous or noncontiguous symbolic key.

If the KEY INTO clause is not specified, the key will be moved into the
corresponding fields in the user record's storage.

 Syntax

��─── RETURN USING (index-key-value) SET (index-set-name) ─────────────────────�

�─── INTO (db-key-field)─┬─────────────────────────────────┬───────────── ; ──��

└─ KEY INTO (symbolic-key-field) ─┘

 Parameters

RETURN USING (index-key-value)
Retrieves the database key for the first index entry whose symbolic key equals
index-key-value (If no such entry exists, a status of 1726 (index entry not found) is
returned.):

SET (index-set-name)
Identifies the indexed set from which the specified database key is to be
returned.

INTO (db-key)
Identifies the field to which the database key is returned. Db-key is the
symbolic name of a user-defined FIXED BINARY (31) field.

KEY INTO (symbolic-key)
Saves the symbolic key (CALC, sort, or index) of the specified record.
Symbolic-key is the name of a user-defined alphanumeric field into which the
symbolic key of the specified record will be returned. Symbolic-key must be
large enough to contain the largest contiguous or noncontiguous symbolic key.

If the KEY INTO clause is not specified, the key will be moved into the
corresponding fields in the user record's storage.

6-168 CA-IDMS DML Reference — PL/I

6.62 RETURN (DC/UCF)

Example: The following RETURN statement retrieves the database key for the first
index entry in the EMP_LNAME_NDX set and moves the record's symbolic key into
the INT_INDEX_KEY field.

RETURN CURRENCY SET (EMP-LNAME-NDX)

FIRST INTO (INT-INDEX-KEY);

Status codes: Upon completion of the RETURN function, the ERROR_STATUS
field in the IDMS-DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0057 A retrieval-only run unit has detected an inconsistency in an index
that should cause an 1143 abend, but optional APAR bit 216 has
been turned on.

1701 The area in which the object record or its index owner participates
has not been readied.

1707 Either the end of the indexed set has been reached or the indexed
set is empty.

1725 Currency has not been established for the specified indexed set.

1726 Record not found.

1763 The indexed set has not been registered with IDMSIXUD for the
subschema in use.

Chapter 6. Data Manipulation Language Statements 6-169

6.63 ROLLBACK

 6.63 ROLLBACK

The ROLLBACK statement requests recovery of the recovery unit (that part of a run
unit that falls between two checkpoints) and, optionally, allows the run unit to continue
database accessing activities without reissuing the necessary BIND and READY
commands. Recovery restores database records, scratch areas, and queues to their
condition at the most recent begin or commit checkpoint written for the issuing run
unit or task.

Note: ROLLBACK TASK applies to CA-IDMS/DC only.

The way in which recovery is effected depends on whether the run unit is running
under the CA-IDMS/DB central version or in local mode and whether the journal file
is on disk or tape:

■ Recovery is effected automatically if the run unit issuing the ROLLBACK
statement is running under the central version and the central version is journaling
to a disk file. The central version continues to process other applications during
recovery. If the last checkpoint was not established by a COMMIT TASK or
FINISH TASK function, the database, scratch, and queue areas may have
checkpoints that do not occur at the same point in the journal file.

■ Recovery is not effected automatically under the following circumstances:

– If the run unit is running under the central version and the central version is
journaling to a tape file

– If the run unit is executing in local mode

In these cases, the ROLLBACK statement causes the affected areas to be flagged
for subsequent recovery by the ROLLBACK utility statement, which rolls back the
database. If the journal file is on disk, you must archive the file to tape using the
ARCHIVE JOURNAL utility statement before using the ROLLBACK utility
statement.

�� For information on the ROLLBACK and ARCHIVE JOURNAL utility
statements, refer to CA-IDMS Utilities.

You can use the ROLLBACK statement in both the navigational and the Logical
Record Facility (LRF) environments.

 Syntax

��─── ROLLBACK ─┬────────┬─┬──────────────┬─ ; ───────────────────────────────��

└─ TASK ─┘ └─ (CONTINUE) ─┘

 Parameters

TASK
Restores all run units associated with the issuing task to the most recent
checkpoint. TASK only applies to CA-IDMS/DC.

6-170 CA-IDMS DML Reference — PL/I

6.63 ROLLBACK

CONTINUE
Rolls back the issuing run unit (ROLLBACK CONTINUE) or all run units
associated with the issuing task (ROLLBACK TASK CONTINUE), but does not
terminate the run unit. Database access can be resumed without reissuing BIND
and READY statements. CONTINUE applies only to programs running under the
CA-IDMS/DB central version.

Example: The following statement clears the system buffers, writes an abort
checkpoint to the journal file, restores database records to the most recent checkpoint,
nullifies all currencies, and terminates the run unit:

 ROLLBACK;

Status codes: Upon completion of the ROLLBACK function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5031 The specified request is invalid; the program may contain a logic
error.

5096 Too many run units are currently active; check the system log for
details.

5097 An invalid status has been received from DBIO/DBMS; check the
system log for details.

Chapter 6. Data Manipulation Language Statements 6-171

6.64 SEND MESSAGE (DC/UCF)

6.64 SEND MESSAGE (DC/UCF)

The SEND MESSAGE statement sends a message to another terminal or user or to a
group of terminals or users defined as a destination during system generation. The
SEND MESSAGE function does not employ the data dictionary message area; instead,
the system places each message in a queue, sending the message to the appropriate
terminal only when it is possible to do so without disrupting executing tasks.
Typically, the system sends queued messages to a terminal the next time the ENTER
NEXT TASK CODE message is displayed.

 Syntax

��─── SEND MESSAGE ─┬──────────┬─ TO ─┬─ DEST ID (destination-id) ─┬──────────�

├─ ONLY ← ─┤ ├─ USER ID (user-id) ────────┤

└─ ALWAYS ─┘ └─ LTERM ID (lterm-id) ──────┘

 �─── FROM (message-location) ─┬─ TO (end-message-location) ─┬─ ; ────────────��

└─ LENGTH (message-length) ───┘

 Parameters

ONLY/ALWAYS
Specifies whether the system is to queue the message if the specified destination,
user, or terminal is not currently available:

ONLY
Sends the message immediately if the destination, user, or terminal is
available, and not to queue the message for subsequent transmission if the
destination, user, or terminal is not available.

Note: If ONLY is specified with the DEST ID option (described below) and
if some, but not all, of a group of users or terminals in the destination
are available, the system will send the message to those available.
The sender will not be aware of any unsuccessful transmissions.

ALWAYS
Sends the message immediately if the destination, user, or terminal is
available, and to queue the message for later transmission if the destination,
user, or terminal is not available.

TO
Specifies the destination, user, or logical terminal to receive the message:

DEST ID (destination-id)
Identifies the recipient of the message as a destination. The specified
destination must have been defined during system generation. Destination-id
is either the symbolic name of a user-defined field that contains the
destination ID or the ID itself enclosed in quotation marks.

USER ID (user-id)
Identifies the user to receive a message. The specified user can be signed on
to any terminal. User-id is the symbolic name of a user-defined field that
contains the user ID.

6-172 CA-IDMS DML Reference — PL/I

6.64 SEND MESSAGE (DC/UCF)

LTERM ID (lterm-id)
Identifies the logical terminal to receive the message. Lterm-id is either the
symbolic name of a user-defined field that contains the terminal ID or the id
itself enclosed in quotation marks.

FROM (message-location)
Specifies the program variable-storage entry that contains the text of the message
to be sent. Message-location is the symbolic name of a user-defined field. The
length of the message text is determined by one of the following specifications:

TO (end-message-location)
Indicates the end of the program variable-storage entry that contains the
message text and is specified following the last field in message-location.
End-message-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the message
text.

LENGTH (message-length)
Defines the length, in bytes, of the message text. Message-length is either the
symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

Examples: The following statement sends the message in the TERM_MESS field to
the logical terminal KENNEDYA:

SEND MESSAGE ALWAYS

TO LTERM ID ('KENNEDYA')

FROM (TERM_MESS) TO (END_TERM_MESS);

The following statement sends the message in the TERM_MESS field to the user
KYJOE2:

 SEND MESSAGE

TO USER ID ('KYJOE2')

FROM (TERM_MESS) TO (END_TERM_MESS);

The following statement sends the message in the TERM_MESS field to the
destination ALL:

 SEND MESSAGE

TO DEST ID ('ALL')

FROM (TERM_MESS) TO (END_TERM_MESS);

Status codes: Upon completion of the SEND MESSAGE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4907 An I/O error has occurred during processing.

4921 The specified message recipient has not been defined.

Chapter 6. Data Manipulation Language Statements 6-173

6.64 SEND MESSAGE (DC/UCF)

Status code Meaning

4931 The parameter list is invalid.

4932 The derived length of the specified message data area is zero or
negative.

4938 The specified program variable storage has not been allocated, as
required. A GET STORAGE request must be issued.

6-174 CA-IDMS DML Reference — PL/I

6.65 SET TIMER (DC/UCF)

6.65 SET TIMER (DC/UCF)

The SET TIMER statement defines an event that is to occur after a specified time
interval or cancels the effect of a previously issued SET TIMER request. Using the
SET TIMER function, a program can:

■ Delay task processing for a specified period of time

■ Post an ECB at the end of a specified period of time

■ Initiate a task at the end of a specified period of time

 Syntax

��─── SET TIMER ─┬─ WAIT ───┬───�

├─ POST ───┤

├─ START ──┤

└─ CANCEL ─┘

 �─┬───┬──────────────────────────�

└─ INTERVAL (time-before-action-taken) SECONDS ─┘

─�─┬────────────────────┬─┬───�─

└─ EVENT (post-ecb) ─┘ └─ TASK CODE (start-task-code) ─────────────────────

─�────────────────────────────┬───�

 ─┬───────────────────────┬──┘

└─ PRIORITY (priority) ─┘

 �─┬──────────────────────────┬───�

└─ TIMER ID (ice-address) ─┘

 �─┬──�─

└─ DATA FROM (start-task-data-location) ───────────────────────────────────

─�───┬─ ; ──────────────────────────────��

─┬─ TO (end-start-task-data-location) ─┬─┘

└─ LENGTH (start-task-data-location) ─┘

 Parameters

WAIT/POST/START/CANCEL
Establishes a time-related event or cancels a previously requested time-dependent
action.

WAIT
Places the issuing task in a wait state and instructs the system to redispatch
the issuing task after the specified time interval elapses. Because WAIT
relinquishes control until the time interval has elapsed, a subsequent SET
TIMER request cannot be used to cancel this WAIT request.

POST
Posts a user-specified ECB after the specified time interval elapses; the
issuing task continues to run. If POST is specified, the EVENT parameter
(described below) must also be specified.

Chapter 6. Data Manipulation Language Statements 6-175

6.65 SET TIMER (DC/UCF)

START
Initiates a user-specified task after the specified time interval elapses. If
START is specified, the TASK CODE parameter (described below) must also
be specified.

CANCEL
Cancels the effect of a previously issued SET TIMER request.

INTERVAL (time-before-action-taken) SECONDS
Specifies (for WAIT, POST, START requests only) the time in seconds from the
issuance of a SET TIMER request at which the requested event will occur.
Time-before-action-taken is either the symbolic name of a user-defined field that
contains the time interval or the interval itself expressed as a numeric constant.

Note: For efficiency reasons, the time when the event is to occur is calculated by
adding the time-before-action-taken value to the time at which the last
TICKER interval expired. Therefore, the actual interval before the event
occurs may vary plus or minus from time-before-action-taken by an
amount up to the TICKER interval. Refer to the CA-IDMS System
Generation manual for more information on the TICKER interval.

EVENT (post-ecb)
Specifies (for POST requests only) the ECB to be posted. Post-ecb is the
symbolic name of a user-defined area composed of three binary fullword fields
that contain the ECB.

TASK CODE (start-task-code)
Specifies (for START requests only) the 1- to 8-character code of the task to be
initiated. Start-task-code is either the symbolic name of the user-defined field that
contains the task code or the task code itself enclosed in quotation marks. The
specified task code must have been defined to the system during system
generation or at run time with a DCMT VARY DYNAMIC TASK command.

PRIORITY (priority)
Specifies a dispatching priority for the task. Priority is either the symbolic name
of a user-defined field that contains the priority or the priority itself expressed as a
numeric constant in the range 0 through 240. The new task's priority defaults to
the priority defined for that task code.

TIMER ID (ice-address)
Specifies (for POST, START, CANCEL requests only) the address of the interval
control element (ICE) associated with the timed event. Ice-address is the
symbolic name of a user-defined FIXED BINARY(31) field. If either POST or
START has been specified, ice-address references a field to which the system will
return the ICE address. If CANCEL has been specified, ice-address references the
field that contains the ICE address returned by the system following a SET
TIMER POST or SET TIMER START request.

Note: The TIMER ID parameter must be specified with SET TIMER POST and
SET TIMER START requests if the program is to issue subsequent SET
TIMER CANCEL requests.

6-176 CA-IDMS DML Reference — PL/I

6.65 SET TIMER (DC/UCF)

DATA FROM (start-task-data-location)
Specifies (for START requests only) the user data to be passed to the new task.
Start-task-data-location is the symbolic name of a user-defined field that contains
the data to be passed. The length of the data area is determined by one of the
following specifications:

TO (end-start-task-data-location)
Indicates the end of the data area being passed to the new task and is
specified following the last data-item entry in start-task-data-location.
End-start-task-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
data area being passed.

LENGTH (start-task-data-location)
Specifies the length, in bytes, of the data area. Start-task-data-location is
either the symbolic name of a user-defined program variable storage field that
contains the length of the data area or the length itself expressed as a numeric
constant.

Note: When the new task is started, the first program which receives control in
the new task can access this data by observing the following conventions:

■ The receiving program must access the data as though it had been
passed by an Assembler program.

■ The data will be preceded by a half-word field containing the length
of the original data.

Examples: The following statement places the issuing task in a wait state and
redispatches it after nine seconds have elapsed:

SET TIMER WAIT

INTERVAL (9) SECONDS;

The following statement posts the event PODB after five seconds have elapsed:

SET TIMER POST

INTERVAL (5) SECONDS

 EVENT ('PODB')

TIMER ID (TMR_ID);

The following code declares a data field, starts the SPSG task after five seconds have
elapsed, and passes the specified data to the task:

DECLARE 1 PASSED_DATA,

2 PASSED_FIXED FIXED,

2 PASSED_CHAR CHAR(2�),

2 PASSED_END CHAR(1);

SET TIMER START

INTERVAL (5) SECONDS

TASK CODE ('SPSG')

DATA FROM (PASSED_DATA) TO (PASSED_END);

The following code in the program invoked by task SPSG establishes access to the
data passed by the above SET TIMER START command:

Chapter 6. Data Manipulation Language Statements 6-177

6.65 SET TIMER (DC/UCF)

SPSGPRG: PROC (PARMIN_DUMMY)

 OPTIONS(MAIN,REENTRANT) REORDER;

DECLARE 1 PARMIN_DUMMY FIXED;

DECLARE 1 PARMIN BASED (ADDR(PARMIN_DUMMY)),

2 PASSED_DATA_LENGTH FIXED BIN(15),

 2 PASSED_DATA,

3 PASSED_FIXED FIXED,

3 PASSED_CHAR CHAR(2�);

The following statement cancels the timed event referenced by TMR-ID:

SET TIMER CANCEL

TIMER ID (TMR_ID);

Status codes: Upon completion of the SET TIMER function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3516 The interval control element (ICE) specified for a SET TIMER
CANCEL request cannot be found.

3532 The derived length of the data area is negative.

6-178 CA-IDMS DML Reference — PL/I

6.66 SNAP (DC/UCF)

 6.66 SNAP (DC/UCF)

The SNAP statement requests a memory snap of one or all of the following areas:

■ Task areas — Includes all resources associated with the issuing task, as well as
the task control element (TCE) and dispatch control element (DCE) for the task.
Information displayed by the snap is formatted with headers.

■ System areas — Includes areas for all tasks and internal system control blocks.
Task areas are not itemized separately. Information displayed by the snap is
formatted with headers.

■ Specified locations in memory — Includes one or more areas of memory
specifically requested by location and length. The information displayed is not
formatted with headers.

The areas requested in the SNAP request are written to the system log file, which is
defined during system generation as a sequential dataset or a dictionary area.

 Syntax

��─── SNAP ─┬─────────────────┬───�

└─ TITLE (title) ─┘

 ┌───┐

 �─↓─┬─ ALL ───┬─┴─; ─��

├─ SYSTEM ──┤

├─ TASK ──┤

 │ ┌──┐ │

└──↓── FROM (begin-snap-location) ─┬─ TO (end-snap-location) ─┬─┴─┘

└─ LENGTH (snap-length) ───┘

 Parameters

TITLE (title)
Specifies the title to be printed at the beginning of each page of the snap. If
requested, a title must contain 134 characters; the first character is reserved for use
by the system, and the second character must be a valid ASA carriage control
character (blank, 0, 1, +, or -). Title is the symbolic name of a user-defined field
that contains the title.

ALL/SYSTEM/TASK
Requests a formatted snap of specified areas.

ALL
Writes a snap of both task and system areas. Areas associated with the
issuing task are formatted separately from the system areas. (Task areas are
also included with the system areas but are not itemized by task.)

SYSTEM
Writes a snap of system areas.

TASK
Writes a snap of task areas.

Chapter 6. Data Manipulation Language Statements 6-179

6.66 SNAP (DC/UCF)

FROM (begin-snap-location)
Writes a snap of the specified memory location. Begin-snap-location is the
symbolic name of a user-defined field that indicates the starting location of the
area to be snapped.

TO (end-snap-location)
Indicates the end of the area to be snapped and is specified following the last
data-item to be included in the snap. End-snap-location is the symbolic name
of either a user-defined dummy byte field or a field that contains a data item
not associated with the area requested in the snap.

LENGTH (snap-length)
Defines the length, in bytes, of the area to be included in the snap.
Snap-length is either the symbolic name of a user-defined field that contains
the length of the data area, or the length itself expressed as a numeric
constant.

Example: The following example illustrates a SNAP statement that writes a memory
snap of the specified memory location:

SNAP TITLE (SNAP_TITLE)

FROM (START_LOC) TO (END_LOC);

Status codes: Upon completion of the SNAP function, the ERROR_STATUS field
in the system communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4032 The derived length of the specified snap storage area is zero or
negative.

6-180 CA-IDMS DML Reference — PL/I

6.67 STARTPAGE (DC/UCF)

 6.67 STARTPAGE (DC/UCF)

The STARTPAGE statement initiates a paging session. It can be followed by any
number of DML commands, including MAP IN and MAP OUT commands. The map
paging session is terminated by an ENDPAGE command (or by another STARTPAGE
command, if one is encountered before an ENDPAGE command).

Note: Only one pageable map can be handled by the statements enclosed by a given
STARTPAGE/ENDPAGE pair.

 Syntax

��─── STARTPAGE session (map-name) ───�

 �─┬────────────┬─┬──────────────┬─┬────────────┬─┬─────────────────┬─ ; ─────��

├─ WAIT ─────┤ ├─ BACKPAGE ← ─┤ ├─ UPDATE ← ─┤ ├─ AUTODISPLAY ← ─┤

├─ NOWAIT ← ─┤ └─ NOBACKPAGE ─┘ └─ BROWSE ───┘ └─ NOAUTODISPLAY ─┘

└─ RETURN ───┘

 Parameters

map-name
Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in Chapter 5, “DML Precompiler-Directive Statements” on
page 5-1. The STARTPAGE command must precede any commands (such as
MAP IN) that specify operations to be performed using the map.

WAIT/NOWAIT/RETURN
Specifies the runtime flow of control when the operator presses a control key.

WAIT
Specifies that runtime mapping automatically handles paging transactions that
do not cause data to be updated. Control is passed to the program when the
terminal operator presses a control key that requests an update or nonpaging
operation.

NOWAIT
Specifies that runtime mapping automatically handles all paging and update
transactions. Control is passed to the program only when neither an update
nor a paging request is made when the operator presses a control key.
NOWAIT is the default.

RETURN
Specifies that runtime mapping does not handle any terminal transactions in
the paging session. Control is passed to the program whenever the operator
presses a control key.

Runtime mapping does not update program variable storage unless a MAP IN
command is issued. In cases where the operator can update data, it is
recommended that WAIT or RETURN be specified for the session so that
data can be retrieved as it is updated.

BACKPAGE/NOBACKPAGE
Specifies whether the terminal operator can display a previous map page.

Chapter 6. Data Manipulation Language Statements 6-181

6.67 STARTPAGE (DC/UCF)

BACKPAGE
Specifies that the operator can display previous pages of detail occurrences.
BACKPAGE is the default.

NOBACKPAGE
Specifies that the operator cannot display any page of detail occurrences with
a page number lower than the current page number. Modifications made on a
given page of the map must be requested by MAP IN statements in the
application program before a MAP OUT RESUME command is issued. The
previous page of detail occurrences is deleted from the session scratch record
when a new map page is displayed.

Note: NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are
specified for the session.

UPDATE/BROWSE
Specifies whether the terminal operator can modify map data fields.

UPDATE
Specifies that the terminal operator can modify variable map fields, subject to
restrictions specified for the map either at map definition time or by
statements in the program. UPDATE is the default.

BROWSE
Specifies that the terminal operator can modify only the page field (if any) of
the map. The MDTs for variable fields on the map can be set on only
according to specifications made either in the map definition or by statements
in the program.

AUTODISPLAY/NOAUTODISPLAY
Specifies whether to override the automatic mapout that occurs when the first page
of a map is built.

AUTODISPLAY
Enables automatic display of the pageable map's first page. AUTODISPLAY
is the default.

NOAUTODISPLAY
Disables automatic display of the pageable map's first page. You display the
first page manually by using a MAP OUT RESUME statement.

Example: The following statement initiates a paging session in which the operator
can page forward and backward within the pageable map but can make no
modifications:

STARTPAGE SESSION (EMPMAPPG)

NOWAIT BACKPAGE BROWSE;

Status codes: Upon completion of the STARTPAGE function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

6-182 CA-IDMS DML Reference — PL/I

6.67 STARTPAGE (DC/UCF)

Status code Meaning

0000 The request has been serviced successfully.

4604 A paging session was already in progress when this STARTPAGE
command was received. An implied ENDPAGE was processed
before this STARTPAGE was successfully executed.

Chapter 6. Data Manipulation Language Statements 6-183

6.68 STORE RECORD

 6.68 STORE RECORD

The STORE RECORD statement performs the following functions:

■ Acquires space and a database key for a new record occurrence in the database

■ Transfers the value of the appropriate elements from program variable storage to
the specified record occurrence in the database

■ Connects the new record occurrence to all sets for which it is defined as an
automatic member

Steps before executing STORE RECORD: Before executing the STORE
RECORD statement, satisfy the following conditions:

■ Ready all areas affected either implicitly or explicitly in one of the update usage
modes (see 6.61, “READY” on page 6-164, earlier in this chapter).

■ Make sure the program initializes all control elements (that is, CALC and sorted
set control fields).

■ If the record being stored has a location mode of DIRECT, initialize the contents
of DIRECT_DBKEY (positions 197-200 of the IDMS communications block, as
described in Chapter 3, “Communications Blocks and Error Detection” on
page 3-1) with a suggested db-key value or a null db-key value of -1.

■ If the record is to be stored in a native VSAM relative-record data set (RRDS),
initialize the contents of DIRECT_DBKEY with the relative-record number that
represents the location within the data set where the record is to be stored.

■ Include in the subschema all sets in which the named record is defined as an
automatic member, and the owner record of each of those sets. Sets for which the
named record is defined as a manual member need not be defined in the
subschema since the STORE RECORD statement does not access those sets. (An
automatic member is connected automatically to the selected set occurrence when
the record is stored; a manual member is not connected automatically to the
selected set occurrence.)

■ If the record being stored has a location mode of VIA, establish currency for that
VIA set, regardless of whether the record being stored is an automatic or manual
member of that set. Current of the VIA set provides the suggested page for the
record being stored.

■ Establish currency for all set occurrences in which the stored record will
participate as an automatic member. Depending on set order, the STORE
RECORD statement uses currency as follows:

– If the named record is defined as a member of a set that is ordered FIRST or
LAST, the record that is current of set establishes the set occurrence to which
the new record will be connected.

– If the named record is defined as a member of a set that is ordered NEXT or
PRIOR, the record that is current of set establishes the set occurrence into

6-184 CA-IDMS DML Reference — PL/I

6.68 STORE RECORD

which the new record will be connected and determines its position within the
set.

– If the named record is defined as a member of a sorted set, the record that is
current of set establishes the set occurrence into which the new record will be
connected. The DBMS compares the sort key of the new record with the sort
key of the current record of set to determine if the new record can be inserted
into the set by movement in the next direction. If it can, the current of set
remains positioned at the record that is current of set and the new record is
inserted. If it cannot, the DBMS finds the owner of the current of set (not
necessarily the current occurrence of the owner record type) and moves as far
forward in the next direction as is necessary to determine the logical insertion
point for the new record.

Location modes: A record is stored in the database based on the location mode
specified in the schema definition of the record. The location modes are as follows:

■ CALC — The record being stored is placed on or near a page calculated by
IDMS-DB from a control element (the CALC key) in the record.

■ VIA — The record being stored is placed either as close as possible to the current
of set (if current of set and member record occurrences share a common page
range) or in the same relative position in the member record's page range as the
current of set is in its associated page range (if current of set and member record
occurrences do not share a common page range).

■ DIRECT — The record being stored is placed on or near a user-specified page as
determined by the value in the DIRECT_DBKEY field of the IDMS-DB
communications block. If DIRECT_DBKEY contains a valid db-key for the
record being stored, the DBMS assigns a db-key on the same page if space is
available to the new record occurrence. Otherwise, it assigns the next available
db-key, subject to the page-range limits of the record being stored. If
DIRECT_DBKEY contains a value of -1, the first db-key available in the page
range in which the record is to be stored is assigned to the record. In any case,
the db-key of the stored record occurrence is returned to DBKEY (positions 13-16
in the CA-IDMS/DB communications block). The contents of DIRECT_DBKEY
remain unchanged.

Currency: Following successful execution of a STORE RECORD statement, the
stored record becomes current of run unit, its record type, its area, and all sets in
which it participates as owner or automatic member.

 Syntax

��─── STORE RECORD (record-name);───��

 Parameter

record-name
Defines the named record occurrence, as specified in program variable storage.
Record-name must specify a record type included in the subschema.

Chapter 6. Data Manipulation Language Statements 6-185

6.68 STORE RECORD

The ordering rules for each set govern the insertion point of the specified record
in the set.

Example: The following figure illustrates the steps necessary to add a new
EMPLOYEE record to the database. Since EMPLOYEE is defined as an automatic
member of both the DEPT_EMPLOYEE and OFFICE_EMPLOYEE sets, currency
must be established in each of those sets before issuing the STORE RECORD.

The first two DML statements establish OFFICE 1 and DEPARTMENT as current of
the OFFICE_EMPLOYEE and DEPT_EMPLOYEE sets, respectively. When
EMPLOYEE 27 is stored, it is connected automatically to each set.

Status codes: Upon completion of the STORE RECORD function, the
ERROR_STATUS field in the IDMS-DB communications block indicates the outcome
of the operation:

6-186 CA-IDMS DML Reference — PL/I

6.68 STORE RECORD

Status code Meaning

0000 The request has been serviced successfully.

1201 The area in which the named record is to be stored has not been
readied.

1202 The suggested DIRECT_DBKEY value is not within the page
range for the named record.

1205 Storage of the record would violate a duplicates-not-allowed option
for a CALC record, a sorted set, or an index set.

1208 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

1209 The named record's area has not been readied in one of the update
usage modes.

1210 The subschema specifies an access restriction that prohibits storage
of the named record.

1211 The record cannot be stored in the area because of insufficient
space.

1212 The record cannot be stored because no db-key is available. This
is a system internal error.

1218 The record has not been bound.

1221 An area other than the area of the named record occurrence has
been readied with an incorrect usage mode.

1225 A set occurrence has not been established for each set in which the
named record is to be stored.

1233 At least one set in which the record participates as an automatic
member has not been included in the subschema.

1253 The subschema definition of an indexed set does not match the
indexed set's physical structure in the database.

1254 Either the prefix length of an SR51 record is less than zero or the
data length is less than or equal to zero.

1255 An invalid length has been defined for a variable length record.

1260 A record occurrence that was encountered in the process of
connecting automatic sets is inconsistent with the set named in the
ERROR_SET field of the CA-IDMS/DB communications block;
probable causes include a broken chain or improper database
description.

1261 The record cannot be stored because of broken chains in the
database.

Chapter 6. Data Manipulation Language Statements 6-187

6.69 STORE RECORD (LRF)

6.69 STORE RECORD (LRF)

The STORE RECORD statement updates the database with field values for a
logical-record occurrence. STORE RECORD does not necessarily result in storing
new occurrences of all or any of the database records that participate in the logical
record; the path selected to service a STORE RECORD logical-record request
performs whatever database access operations the DBA has specified to service the
request. For example, if an existing department gets a new employee, only the new
employee information will be stored in the database; the department information need
not be stored in the database because it already exists.

LRF uses field values present in the variable-storage location reserved for the logical
record to make the appropriate updates to the database. You can optionally name an
alternative storage location from which the new field values are to be obtained to
perform the requested store operation.

 Syntax

��─── STORE RECORD (logical-record-location) ─────────────────────────────────�

 �─┬──────────────────────────────────────┬─┬──────────────────────────────┬──�

└─ FROM (alt-logical-record-location) ─┘ └─ WHERE (boolean-expression) ─┘

 �─┬──┬─ ; ─────────────────��

└─ ON LR_STATUS (path-status) imperative-statement ─┘

 Parameters

logical-record-name
Names the logical record to be stored. Unless the FROM clause (see below) is
included, LRF uses field values present in the variable-storage location reserved
for the specified logical record to make the appropriate updates to the database.
Logical-record-name must specify a logical record defined in the subschema.

FROM (alt-logical-record-location)
Names an alternative variable storage location that contains the field values to be
used to make appropriate updates to the database. When storing a logical record
that has previously been retrieved into an alternative variable storage location, use
the FROM clause to name the same area specified in the OBTAIN request. If the
FROM clause is included in the STORE RECORD statement,
alt-logical-record-location must identify a record location defined in program
variable storage.

WHERE (boolean expression)
Specifies selection criteria to be applied to the object logical record.

�� For details on coding the WHERE clause, see 6.78, “Logical-record clauses
(WHERE and ON)” on page 6-215 at the end of this chapter.

ON LR_STATUS (path-status) imperative-statement
Specifies the action to be taken if path-status is returned to the LR_STATUS field
in the LRC block. Path-status must be a 1- to 16-character alphanumeric value.

6-188 CA-IDMS DML Reference — PL/I

6.69 STORE RECORD (LRF)

�� For details on coding this clause, see 6.78, “Logical-record clauses (WHERE
and ON)” on page 6-215 at the end of this chapter.

Example: The following example illustrates the steps necessary to store a new
logical record, EMP-INSURANCE-LR, for a given employee:

EMP_ID_�415 = EMP_ID_IN;

INS_PLAN_CODE_�435 = INS_PLAN_IN;

SELECTION_DATE_�4�� = S_DATE_IN;

TERMINATION_DATE_�4�� = T_DATE_IN;

TYPE_�4�� = TYPE_IN;

INS_PLAN_CODE_�4�� = PLAN_IN;

STORE RECORD (EMP_INSURANCE_LR);

The following figure illustrates the new occurrence of the record
EMP_INSURANCE_LR. The new occurrence of EMP_INSURANCE_LR consists of
EMPLOYEE 149, INS_PLAN 001, and COVERAGE 'D'. The COVERAGE
occurrence represents the only data physically added to the database.

Chapter 6. Data Manipulation Language Statements 6-189

6.70 TRANSFER (DC/UCF)

 6.70 TRANSFER (DC/UCF)

The TRANSFER statement is used to:

■ Establish linkage with a specified program and to pass control and an optional
parameter list to that program. The program issuing the TRANSFER RETURN
request expects return of control at the instruction immediately following the
TRANSFER statement when the linked program terminates or issues a DC
RETURN request.

■ Transfer control and an optional parameter list to a specified program. The
program issuing the TRANSFER NORETURN request does not expect return of
control.

Passing parameters from a non-PL/I program: If parameters are passed to a
PL/I program from a non-PL/I program (CA-ADS, COBOL, Assembler), special code
must be used in the PL/I program. A partial sample of this code is shown below:

SAMPPROC: PROCEDURE (F1,F2,F3) OPTIONS (MAIN,REENTRANT);

DCL (F1,F2,F3) POINTER;

DCL (SAMPSUBS SUBSCHEMA, SAMPSCHM SCHEMA) MODE (IDMS_DC) DEBUG;

DCL IDMS ENTRY OPTIONS (INTER,ASM);

DCL IDMSP ENTRY;

DCL PASSED_FIELD_1 FIXED BIN (31) BASED(ADDR(F1));

INCLUDE IDMS (SUBSCHEMA_CTRL BASED(ADDR(F2)));

INCLUDE IDMS (RECORD_AA BASED(ADDR(F3)));

 .

 .

 .

rest of code

Here, a non-PL/I program has transferred control to this sample program, passing three
parameters. The first is binary fullword. The second is the address of the subschema
control block that the program will use. The third is a CA-IDMS/DB record. Note
that dummy parameters are set up to provide addresses on which to base the structures
that are actually passed.

Refer to the PL/I programmer's reference for your site for more information on passing
parameters to a PL/I program from an Assembler program.

Note: The section (in the same reference) on invoking PL/I programs from COBOL
programs is not relevant. In a DC/UCF environment, you must code the PL/I
program as shown in the previous sample.

 Syntax

��── TRANSFER TO (program-name) ─┬──────────────┬─┬───────────────────────┬ ;─��

├─ RETURN ─────┤ │ ┌───── , ─────┐ │

├─ LINK ───────┤ └ (─↓─ parameter ─┴) ─┘

├─ NORETURN ← ─┤

└─ XCTL ───────┘

 Parameters

6-190 CA-IDMS DML Reference — PL/I

6.70 TRANSFER (DC/UCF)

TO (program-name)
Specifies the 1- to 8-character name of the program to which control is
transferred. Program-name is either the symbolic name of a user-defined field
that contains the program name, or the name itself enclosed in quotation marks.

RETURN/NORETURN
Specifies whether control will be returned to the the calling program.

RETURN
Establishes linkage with the specified program, expecting return of control.
The keywords RETURN and LINK are synonymous.

NORETURN
Transfers control to the specified program, not expecting return of control.
The keywords NORETURN and XCTL are synonymous. NORETURN is the
default.

parameter
Passes one or more parameters (data items) to the program receiving control.
Parameter is the symbolic name of a user-defined field that contains the names of
the data items to be passed. Multiple parameter specifications must be separated
with a blank.

To use parameter, the DECLARE IDMSP ENTRY statement is required. For
details on this PL/I declarative, see Chapter 4, “Required PL/I Declaratives” on
page 4-1.

If parameter is specified, the data items being passed are defined in program
variable storage for both the calling program and the linked program. The
program receiving control must include a corresponding parameter clause in its
PROCEDURE statement.

Examples: The following statement transfers control to the program in the
PROGRAM_NAME field; the issuing program expects return of control:

TRANSFER TO (PROGRAM_NAME)

 LINK;

The following statement transfers control to PROGRAMD and passes three data items
(FIELD_1, FIELD_2, and FIELD_3) to the program; the issuing program does not
expect return of control:

TRANSFER TO ('PROGRAMD')

 NORETURN

(FIELD_1, FIELD_2, FIELD_3);

Status codes: Upon completion of the TRANSFER function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-191

6.70 TRANSFER (DC/UCF)

Status code Meaning

3020 The request cannot be serviced because an I/O, program-not-found,
or potential deadlock error has occurred.

6-192 CA-IDMS DML Reference — PL/I

6.71 WAIT (DC/UCF)

 6.71 WAIT (DC/UCF)

The WAIT statement relinquishes control either to the system, pending completion of
one or more events, or to a higher priority ready-to-run task. If control is relinquished
to wait for the completion of one or more events, an event control block (ECB) must
be defined for each event. If an ECB is already posted when the WAIT is issued, the
task is redispatched immediately and control does not pass to another task.

 Syntax

 ┌───────────────┐

��─── WAIT ─┬──┬─ LONG ← ─┬─┬─↓─ EVENT (ecb) ─┴─────┬─┬───────────────────────�

│ └─ SHORT ──┘ └─ EVENT NAME (ecb-id) ─┘ │

└─ REDISPATCH ────────────────────────────┘

�──┬───────────────────────────────────┬─ ; ──────────────────────────────────��

└─ STALL INTERVAL (stall-interval) ─┘

 Parameters

LONG/SHORT
Specifies whether the wait is expected to be of long-term or short-term duration.

LONG
Specifies that the wait is expected to be long-term. LONG should be
specified for all waits expected to last a second or more (for example,
terminal input). LONG is the default.

SHORT
Specifies that the wait is expected to be short-term. SHORT should be
specified for all waits expected to last less than a second (for example, a disk
I/O).

EVENT/EVENT NAME
Specifies an event upon which the issuing task is to wait.

EVENT (ecb)
Defines one or more ECBs upon which the task will wait. ecb is the
symbolic name of a user-defined area that contains three binary fullword
fields that contain the ECB. Multiple EVENT parameters must be separated
by at least one blank.

EVENT NAME (ecb-id)
Specifies the 4-character symbolic ID of the ECB upon which the task will
wait. Ecb-id is either the symbolic name of a user-defined field that contains
the ECB ID, or the ID itself enclosed in quotation marks. Multiple EVENT
NAME parameters cannot be specified.

REDISPATCH
Specifies that the issuing task wishes to relinquish control to any higher priority
ready-to-run task before being redispatched.

Chapter 6. Data Manipulation Language Statements 6-193

6.71 WAIT (DC/UCF)

STALL INTERVAL (stall-interval)
Indicates the time, in wall-clock seconds, that the system is to suspend processing
of the issuing task. Stall-interval is the symbolic name of a user-defined fixed
binary field containing the stall interval, or the interval itself expressed as a
numeric constant.

Example: The following statement requests a short-term wait on the event PODB:

 WAIT

 SHORT

EVENT NAME ('PODB');

Status codes: Upon completion of the WAIT function, the ERROR_STATUS field
in the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3101 To wait on the specified ECB would cause a deadlock.

6-194 CA-IDMS DML Reference — PL/I

6.72 WRITE JOURNAL (DC/UCF)

6.72 WRITE JOURNAL (DC/UCF)

The WRITE JOURNAL statement writes a task-defined record to the journal file.
Records written to the journal file with the WRITE JOURNAL function will be
available to user-defined exit routines during a task- or system-initiated rollback.

 Syntax

��─── WRITE JOURNAL ─┬────────────┬─┬──────────┬──────────────────────────────�

├─ WAIT ─────┤ ├─ SPAN ← ─┤

└─ NOWAIT ← ─┘ └─ NOSPAN ─┘

 �─── FROM (record-location) ─┬─ TO (end-record-location) ─┬─ ; ──────────────��

└─ LENGTH (record-length) ───┘

 Parameters

WAIT/NOWAIT
Specifies whether the issuing task is to wait for completion of the WRITE
JOURNAL function before resuming execution:

WAIT
Specifies that the issuing task will wait for completion of the physical I/O
associated with the WRITE JOURNAL function before resuming execution.
This option will cause the system to write a partially filled buffer to the
journal file.

NOWAIT
Specifies that the issuing task will not wait for completion of the WRITE
JOURNAL function; the journal record will remain in a storage buffer until a
future request necessitates writing the buffer to the journal file. NOWAIT is
the default.

SPAN
Indicates that the system will write the record across several journal file blocks, if
necessary. SPAN is the default.

Note: In general, the SPAN option provides better space utilization in the journal
file than NOSPAN because it increases the average fullness of each block.

NOSPAN
Indicates that the system will write the record to a single journal file block; if it is
longer than the journal block, the record will be split.

When a record is shorter than a journal file block, based on space available in the
current journal block, the system will either place the record in the block, split it
across multiple blocks (SPAN), or write it to a new block after the current block
is written (NOSPAN).

The following considerations apply to using an exit routine to retrieve journal file
records during recovery:

■ If a WRITE JOURNAL statement issued before a failure specified the SPAN
option, records may have been written across several journal blocks. To

Chapter 6. Data Manipulation Language Statements 6-195

6.72 WRITE JOURNAL (DC/UCF)

retrieve these records, the exit routine will be invoked once for each segment
of each record to be retrieved.

■ If a WRITE JOURNAL statement issued before a failure specified the
NOSPAN option and records written to the journal file are shorter than
journal blocks, the exit routine need only be concerned with the complete
records.

FROM (record-location)
Defines the program variable-storage entry of the record to be written to the
journal file. Record-location is the symbolic name of a user-defined field. The
length of the record area is determined by one of the following specifications:

TO (end-record-location)
Indicates the end of the record area to be written to the journal file and is
specified following the last data-item entry in record-location.
End-record-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the record
being written to the journal file.

LENGTH (record-length)
Defines the length, in bytes, of the record to be written to the journal file.
Record-length is either the symbolic name of the user-defined field that
contains the length, or the length itself expressed as a numeric constant.

Example: The following statement writes the JOURNAL_DATA record to the
journal file, spanning it across several blocks if necessary:

WRITE JOURNAL SPAN

FROM (JOURNAL_DATA) TO (END_JOURNAL_DATA);

Status codes: Upon completion of the WRITE JOURNAL function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5002 Storage is not available for the required control blocks.

5032 The derived length of the specified journal record is zero or
negative.

5097 An invalid status has been received from DBIO/DBMS; check the
system log for details.

6-196 CA-IDMS DML Reference — PL/I

6.73 WRITE LINE TO TERMINAL (DC/UCF)

6.73 WRITE LINE TO TERMINAL (DC/UCF)

The WRITE LINE TO TERMINAL statement transfers data from program variable
storage to a terminal. WRITE LINE TO TERMINAL also establishes, modifies, and
deletes page header lines.

Data transfers requested by WRITE LINE TO TERMINAL statements can be
synchronous or asynchronous:

■ Synchronous — After a synchronous request, control passes to the system. The
system places the issuing task in an inactive state. For non-3270 devices, control
does not return to the issuing program until the WRITE LINE TO TERMINAL
request is complete. For 3270-type devices, all lines of output are saved in a
buffer; the buffer is not transmitted to the terminal until it is full.

The transfer of a line to the buffer will result in a processing delay; however,
control returns to the program immediately following the request. If the line of
data fills the buffer, the entire page of data must be transmitted to the terminal. In
this case, control does not return to the issuing program until the terminal operator
responds by pressing ENTER. Thus, the program is made conversational.

■ Asynchronous — After an asynchronous request, control returns immediately to
the issuing program. Thereafter, each time the program issues a line mode I/O
request, the system automatically checks to determine if the last asynchronous
request has completed and, therefore, whether a new data transfer can be initiated.

With asynchronous requests, programs can buffer all required pages of output
without suspending task execution during the actual transmission of data.
However, the task can optionally terminate itself, thereby freeing resources and
allowing the terminal operator to review the buffered output.

The system processes I/O requests in the sequence received from the task; thus, if a
program issues a synchronous WRITE LINE TO TERMINAL request after issuing one
or more asynchronous requests, the system will complete all I/O requests before
returning control to the issuing program.

The WRITE LINE TO TERMINAL request issued automatically by the system to
empty partially filled buffers upon completion of a task is synchronous; therefore, the
terminal operator can view all screens and catch up with processing at that time. If an
application allows the terminal operator to interrupt or terminate processing at some
point within a task, a synchronous WRITE LINE TO TERMINAL request must be
issued to suspend processing while awaiting an operator response.

 Syntax

Chapter 6. Data Manipulation Language Statements 6-197

6.73 WRITE LINE TO TERMINAL (DC/UCF)

��─── WRITE LINE TO TERMINAL ─┬──────────┬─┬───────────┬─┬──────────────┬─────�

├─ WAIT ← ─┤ ├─ NEWPAGE ─┤ └─ NOBACKPAGE ─┘

└─ NOWAIT ─┘ └─ ERASE ───┘

 �─── FROM (output-data-location) ─┬─ TO (end-output-data-location) ─┬────────�

└─ LENGTH (output-data-length) ───┘

 �─┬───────────────────────────────┬─ ; ──────────────────────────────────────��

└─ HEADER (header-line-number) ─┘

 Parameters

WAIT
Specifies that the write operation is synchronous; the issuing task automatically
relinquishes control and must wait for completion of the output operation before
processing can continue. WAIT is the default.

NOWAIT
Specifies that the write operation is asynchronous; the issuing task continues
executing.

NEWPAGE
Writes the output data line beginning on a new page. For 3270-type devices, the
NEWPAGE option forces the system to output the contents of the current buffer,
even if the buffer is not full. The keywords NEWPAGE and ERASE are
synonymous.

NOBACKPAGE
Specifies (for 3270-type devices only) that pages output in a scratch area are not
to be kept. If NOBACKPAGE is specified, the terminal operator can view only
the current page of output. NOBACKPAGE is valid only with the first I/O
request in a line mode session.

FROM (output-data-location)
Identifies the program variable-storage entry of the data to be transferred to the
terminal device, or the page-header line being created, modified, or deleted.
Output-data-location is the symbolic name of a user-defined field. The length of
the output data stream is determined by one of the following specifications:

TO (end-output-data-location)
Indicates the end of the program variable-storage entry that contains the
output data stream and is specified following the last data-item entry in
output-data-location. End-output-data-location is the symbolic name of either
a user-defined dummy byte field or a field that contains a data item not
associated with the output data.

LENGTH (output-data-length)
Defines the length, in bytes, of the output data area. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Note: If the WRITE LINE TO TERMINAL statement is being used to delete
a page-header line, output-data-length must be zero.

6-198 CA-IDMS DML Reference — PL/I

6.73 WRITE LINE TO TERMINAL (DC/UCF)

HEADER (header-line-number)
Specifies the number of the page header line being created, modified, or deleted.
Header-line-number is either the symbolic name of a user-defined field that
contains the header line number, or the header line number itself expressed as a
numeric constant.

Examples: The following statement defines the value of a data area as a header to
be displayed at the top of each new page written to the terminal:

WRITE LINE TO TERMINAL

FROM (EMPL_HEAD) TO (END_EMPL_HEAD)

 HEADER (1);

The following statement writes the value in the specified data area to a new page on
the terminal:

WRITE LINE TO TERMINAL

 NOWAIT NEWPAGE

FROM (EMPL_RPT) LENGTH (6�);

Status codes: Upon completion of the WRITE LINE TO TERMINAL function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4707 A logical or permanent I/O error has occurred during processing.

4731 The line request block (LRB) contains an invalid field, indicating a
possible error in the program's parameters.

4732 The derived length of the specified line output area is zero or
negative.

4738 The specified program variable-storage entry has not been allocated
as required. A GET STORAGE request must be issued.

4743 The line I/O session has been canceled; the terminal operator has
pressed CLEAR (3270s), ATTENTION (2741s), or BREAK
(teletypes).

Chapter 6. Data Manipulation Language Statements 6-199

6.74 WRITE LOG (DC/UCF)

6.74 WRITE LOG (DC/UCF)

The WRITE LOG statement retrieves a predefined message from the message area of
the data dictionary and optionally writes the message to a specified location in
program variable storage. Retrieved messages are sent to the destination specified in
the message definition; typical destinations are the operator's console and the system
log file. If the operator's console has been defined as the message destination, the
WRITE LOG statement can request a reply. When a reply is requested, control is not
returned to the issuing task until the reply is received.

Message ID and severity code: The message ID specified in the WRITE LOG
statement is a 7-digit number. The first six (most significant) digits make up the
actual message ID used to retrieve the message from the data dictionary; the seventh
digit is a severity code. This severity code is predefined in the dictionary and is
retrieved along with the message text to indicate the action to be taken after the
message is written to the log. The following table shows severity codes and
corresponding system actions.

Message IDs that are not in the dictionary: If a WRITE LOG statement
specifies a message ID that is not in the dictionary, the system will use a prototype
message but will perform the action associated with the severity code specified in the
WRITE LOG request.

Severity code Corresponding action by the system

 0 Return control to the issuing program and continue processing.

 1 Snap all task resources and return control to the issuing
program.

 2 Snap all system areas and return control to the issuing
program.

 3 Snap all task resources and abend the task with a task abend
code of D002.

 4 Snap all system areas and abend the task with a task abend
code of D002.

 5 Terminate the task with a task abend code of D002.

 6 Undefined.

 7 Undefined.

 8 Snap all system areas and abend the system with a system
abend code of 3996.

 9 Terminate the system with a system abend code of 3996.

6-200 CA-IDMS DML Reference — PL/I

6.74 WRITE LOG (DC/UCF)

Messages containing symbolic parameters: Messages stored in the data
dictionary can contain symbolic parameters. Symbolic parameters, identified by an
ampersand (&) followed by a 2-digit numeric identifier, can appear in any order within
the message. The WRITE LOG statement can specify replacement values for one or
more symbolic parameters; however, the position of replacement values within the
WRITE LOG request must correspond exactly with the 2-digit numeric identifier in the
message text. For example, the first value specified corresponds to &01, the second to
&02, and so forth.

 Syntax

��─── WRITE LOG MESSAGE ID (message-id) ──────────────────────────────────────�

 �─┬───┬────────�

 │ ┌───┐ │

└─ PARMS ─↓─ FROM (parm-location) ─┬─ TO (end-parm-location) ─┬─┴─┘

└─ LENGTH (parm-length) ───┘

 �─┬───┬──────�

└─ REPLY INTO (reply-location) ─┬─ TO (end-reply-location) ───────┬─┘

└─ MAX LENGTH (reply-max-length) ─┘

 �─┬──�─

└─ TEXT INTO (text-return-location) ─┬─ TO (end-text-return-location) ─┬───

└─ MAX LENGTH (text-max-length) ──┘

─�──┬─ ; ─────────────────��

 ───┬──────────────────────────────┬──┬─────────────┬──┘

└─ MESSAGE_PREFIX ─┬─ YES ← ─┬─┘ └─ TEXT ONLY ─┘

└─ NO ────┘

 Parameters

MESSAGE ID (message-id)
Specifies the 7-digit message ID. The first six digits specify the ID of the
message; the seventh digit specifies the message's severity code. Message-id is
either the symbolic name of a user-defined FIXED BINARY(31) field that
contains the message ID, or the ID itself expressed as a numeric constant.
Message IDs 000001 through 900000 are reserved for use by the system; the
WRITE LOG statement can specify any number in the range 900001 through
999999.

Note: The message length must be seven digits. The system will always interpret the
last digit as the severity level. If you request message 987659 and do not code
a severity level of zero (that is, 9876590) you are actually requesting that
message 098765 be written to the log and that the system should be terminated
with a 3996 abend code.

Note: When messages are added to the data dictionary for use with the WRITE LOG
statement, they are assigned an 8-character identification number; the first two
characters are DC. A request for message 987654 retrieves DC987654.

PARMS FROM (parm-location)
Supplies replacement values for one or more symbolic parameters stored with the
message text. Parm-location is the symbolic name of a user-defined field that
contains the program variable-storage entry of the replacement parameter.

Chapter 6. Data Manipulation Language Statements 6-201

6.74 WRITE LOG (DC/UCF)

TO (end-parm-location)
Indicates the end of the program variable-storage entry that contains the
replacement parameter and is specified following the last data item in
parm-location. End-parm-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
replacement parameter.

LENGTH (parm-length)
Defines the length, in bytes, of the replacement parameter. Parm-location is either
the symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

The following WRITE LOG statement replaces a symbolic parameter with the
contents of the FLT_NO field:

WRITE LOG MESSAGE ID (9���16�)

PARMS FROM (FLT_NO) TO (END_FLT_NO);

Each replacement parameter must begin with a 1-byte field from which the system
obtains the length (in hexadecimal) of the parameter. This 1-byte field cannot be
displayed. Consider the following example:

 �3 FLT_NO,

 �5 FILLER CHAR (1),

�5 FLT_PARM CHAR (6) INIT ('AAA2�1'),

 �5 END_FLT_NO CHAR (1);

REPLY INTO (reply-location)
Specifies the program variable-storage entry of the area reserved for a reply to the
message issued by the WRITE LOG request. Reply-location is the symbolic name
of a user-defined field. The length of the reply area is determined by one of the
following specifications:

TO (end-reply-location)
Indicates the end of the program variable-storage entry reserved for the reply
and is specified following the last field in reply-location. End-reply-location
is the symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the reply.

MAX LENGTH (reply-max-length)
Defines the maximum length, in bytes, of the area reserved for the reply.
Reply-max-length is either the symbolic name of a user-defined field that
contains the length, or the length itself expressed as a numeric constant.

TEXT INTO (text-return-location)
Specifies that the contents of the named message, along with any replacement
parameters, are to be written to the issuing program. Text-return-location is the
symbolic name of a user-defined 1- to 132-character alphanumeric field that
contains the program variable-storage entry to which the message text is to be
returned. The length of the returned text is determined by one of the following
specifications:

TO (end-text-return-location)
Indicates the end of the program variable-storage entry reserved for the text
and is specified following the last data item in text-return-location.
End-text-return-location is the symbolic name of either a user-defined dummy

6-202 CA-IDMS DML Reference — PL/I

6.74 WRITE LOG (DC/UCF)

byte field or a field that contains a data item not associated with the returned
text.

MAX LENGTH (text-max-length)
Defines the maximum length, in bytes, of the program variable-storage entry
reserved for the returned message text. Text-max-length is either the symbolic
name of a user-defined field that contains the text length, or the length itself
expressed as a numeric constant.

MESSAGE_PREFIX YES/NO
Specifies the format of the message prefix.

YES
Indicates that the message text is preceded by:

IDMS DCnnnnnnn Vssssss REPLYnn

DCnnnnnnn is the message number, Vssssss is the system number, and
REPLYnn is the message's system-supplied reply number (present only if the
REPLY parameter is used). YES is the default.

NO
Indicates that the message text is preceded by:

 DCnnnnnnn

DCnnnnnnn is the message number.

TEXT ONLY
Indicates that the message text is output with no prefix.

Example: The following figure illustrates a WRITE LOG statement that supplies
three replacement parameters.

Task A issues a WRITE LOG request for message 900121, specifying values to
replace symbolic parameters &01, &02, and &03 stored with the message text. The
system sends the message to its destination, which has been defined as the logical
terminal associated with the issuing task.

Chapter 6. Data Manipulation Language Statements 6-203

6.74 WRITE LOG (DC/UCF)

Status codes: Upon completion of the WRITE LOG function, the
ERROR_STATUS field of the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3623 No storage or resource control element (RCE) can be allocated for
the specified reply area.

3624 The maximum number of outstanding replies has been exceeded; a
maximum of 98 messages can be awaiting reply at a given time.

3631 The parameter list is invalid.

6-204 CA-IDMS DML Reference — PL/I

6.75 WRITE PRINTER (DC/UCF)

6.75 WRITE PRINTER (DC/UCF)

The WRITE PRINTER statement transmits data from a task to a terminal defined to
the system as a printer device during system generation. Any type of terminal can be
designated as a printer; however, the terminal is usually a hard-copy device.

The system does not transmit data directly from program variable storage to the
terminal. Rather, data is passed to a queue maintained by the system, and from the
queue to the printer. The data stream passed to the queue by the WRITE PRINTER
request contains only data; the system adds the necessary line and device control
characters when it writes the data to the printer.

Note: Native mode data streams (that is, those that contain device-control information
as well as user data) can also be transmitted with a WRITE PRINTER request.
This capability is useful in formatting reports for 3280-type printers.

Each line of data transmitted in a WRITE PRINTER request is considered a record.
Each record is associated with a report in the print queue. A report consists of one or
more records. Any task can have up to 256 active print reports. A program can issue
multiple WRITE PRINTER requests, each specifying a different report. Because the
system maintains the records associated with each report individually, records
associated with one report are not interspersed with records associated with other
reports when printed.

WRITE PRINTER directs reports to print classes and destinations: The
WRITE PRINTER request can direct reports to print classes and to destinations:

■ Print classes — During system generation, one or more print classes are
associated with each terminal designated as a printer. For each report, the first
record transmitted to the print queue by means of a WRITE PRINTER request
establishes the print class for that report. The report will be printed on the first
available printer that is assigned the same print class.

■ Destinations — Destinations are groups of terminals, printers, or users. If
destinations have been defined during system generation, the WRITE PRINTER
request can direct a report to a destination. Reports sent to printer destinations are
printed on the first available printer for the destination, regardless of print class.

The system prints a report only when that report is completed, either explicitly as part
of a WRITE PRINTER request or implicitly when the issuing task terminates.

Affect of termination: Normal task termination, a FINISH TASK request, or a
COMMIT TASK request will end all of the task's reports. Queued reports are made
eligible for printing.

Abnormal task termination (abend) or a ROLLBACK TASK request will cause any
queued reports belonging to the task to be deleted.

 Syntax

Chapter 6. Data Manipulation Language Statements 6-205

6.75 WRITE PRINTER (DC/UCF)

��─── WRITE PRINTER ─┬───────────┬──┬──────────┬──────────────────────────────�

├─ NEWPAGE ─┤ └─ ENDRPT ─┘

└─ ERASE ───┘

 �─┬──┬──────────┬─ FROM (message-location) ─┬─ TO (end-message-location) ─┬┬─�

│ └─ NATIVE ─┘ └─ LENGTH (message-length) ───┘│

└─ SCREEN CONTENTS ──┘

 �─┬─────────────────────────────────┬─┬───────────────────────────────────┬──�

└─ COPIES (─┬─ 1 ← ────────┬─) ─┘ └─ REPORT ID (─┬─ 1 ← ───────┬─) ─┘

└─ copy-count ─┘ └─ report-id ─┘

 �─┬───┬──────────────────────�

└─┬─ CLASS (printer-class) ───────────────────────┬─┘

└─ DESTINATION (printer-destination) ─┬───────┬─┘

└─ ALL ─┘

 �─┬────────┬─┬────────┬─ ; ──��

└─ HOLD ─┘ └─ KEEP ─┘

 Parameters

NEWPAGE
Specifies that the data stream will be printed beginning on a new page. The
keywords NEWPAGE and ERASE are synonymous.

ENDRPT
Indicates that the data stream constitutes the last record in the specified report.
When ENDRPT is specified, the report can be printed before the issuing task has
terminated. However, the program must issue a COMMIT TASK request to
signal the system to print the ended report. A subsequent WRITE PRINTER
request with the same report id will start a separate report.

FROM (message-location)
Specifies the program variable-storage entry of the data to be transmitted to the
print queue. Message-location is the symbolic name of a user-defined field. The
length of the data area is determined by one of the following specifications:

TO (end-message-location)
Indicates the end of the program variable-storage entry that contains the data
to be transmitted to the print queue and is specified following the last
data-item entry in message-location. End-message-location is the symbolic
name of either a user-defined dummy byte field or a field that contains a data
item not associated with the output data.

LENGTH (message-length)
Defines the length, in bytes, of the data stream. Message-length is either the
symbolic name of a user-defined field that contains the length of the data, or
the length itself expressed as a numeric constant.

NATIVE
Specifies that the data stream contains device-control characters. If NATIVE is
not specified, the system automatically inserts the necessary characters.

SCREEN CONTENTS
Specifies (for 3270-type devices only) that the contents of the currently displayed
screen are to be transmitted to the print queue. If SCREEN CONTENTS is

6-206 CA-IDMS DML Reference — PL/I

6.75 WRITE PRINTER (DC/UCF)

specified with a non-3270 terminal or a remote 3270 terminal running under
TCAM, an error condition results.

COPIES (1/copy-count)
Specifies the number of copies of the report to be printed. The specified copy
count must be an integer in the range 1 through 255; the default is 1. Copy-count
is either the symbolic name of a user-defined field that contains the copy count, or
the count itself expressed as a numeric constant.

REPORT ID (1/report-id)
Specifies the identifier of the report to be printed. The specified identifier must be
an integer in the range 1 through 255; the default is 1. Report-id is either the
symbolic name of a user-defined field that contains the report ID, or the ID itself
expressed as a numeric constant.

CLASS (printer-class)
Specifies the print class to which the report will be assigned. Valid print classes
are 1 through 64; the default is 1. Printer-class is either the symbolic name of a
user-defined field that contains the print class, or the class itself expressed as a
numeric constant.

DESTINATION (printer-destination)
Specifies the 1- to 8-character destination to which the report will be routed.
Printer-destination is either the symbolic name of a user-defined field that
contains the destination, or the destination itself enclosed in quotation marks. The
specified destination must have been defined during system generation.

ALL
Specifies that the report is to be printed on all of the printers belonging to the
specified destination. The report will be printed, one printer at a time, and saved
until it has been printed on each of the printers associated with the destination.

CLASS/DESTINATION
Specifies a print class or destination (terminal, printer, or user). Specify this
parameter only for the first line of each report. If you specify no class or
destination, the default print class assigned to the issuing task's physical terminal
during system generation is used.

HOLD
Specifies that a queued report will be held without being printed. The specified
report will be held until a DCMT VARY REPORT report-name RELEASE
command is issued at runtime.

KEEP
Specifies that the system will keep the report in the print queue after it has been
printed. The report can be released for printing with a DCMT VARY REPORT
report-name RELEASE command. In this way, the report can be printed several
times. A KEPT report can be deleted from the print queue manually (using a
DCMT VARY REPORT report-name DELETE command at runtime) or
automatically (when the queue retention period has been exceeded).

Chapter 6. Data Manipulation Language Statements 6-207

6.75 WRITE PRINTER (DC/UCF)

Example: The following statement associates the data in the specified location with
report 32 in the print queue and prints it beginning on a new page. Report 32 will
print on the first terminal assigned to print class 3 when the program notifies the
system that the report is complete or when the task terminates.

 WRITE PRINTER

 NEWPAGE

FROM (PASSGR_RPT) TO (END_PASSGR_RPT)

REPORT ID (32)

 CLASS (3);

The following statement prints three copies of the current screen contents on a printer
associated with destination A, and keeps the contents of the report in the print queue
after it has printed:

 WRITE PRINTER

 SCREEN CONTENTS

 COPIES (3)

 DESTINATION ('A')

 KEEP;

Status codes: Upon completion of the WRITE PRINTER function, the
ERROR_STATUS field in the IDMS-DC communications block indicates the outcome
of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4807 An I/O error has occurred while placing the record in the print
queue.

4818 The current system definition contains no logical terminal-printer
associations.

4821 The specified printer destination is undefined or is not a printer.

4831 The parameter list is invalid.

4832 The derived length of the specified printer output data area is zero
or negative.

4838 The specified program variable-storage entry has not been allocated
as required. A GET STORAGE request for the specified variable
must be issued before the WRITE PRINTER statement.

4845 A WRITE PRINTER SCREEN CONTENTS request cannot be
serviced because the terminal associated with the issuing task is not
a 3270-type device or is a remote 3270 device running under
TCAM.

4846 A terminal I/O error has occurred.

6-208 CA-IDMS DML Reference — PL/I

6.76 WRITE TERMINAL (DC/UCF)

6.76 WRITE TERMINAL (DC/UCF)

The WRITE TERMINAL statement requests a synchronous or asynchronous data
transfer from program variable storage to the terminal buffer.

 Syntax

��─── WRITE TERMINAL ─┬──────────┬─┬─────────────────────────────┬────────────�

├─ WAIT ← ─┤ ├─┬─ NEWPAGE ─┬───────────────┤

└─ NOWAIT ─┘ │ └─ ERASE ───┘ │

└─┬─ EAU ───────────────────┬─┘

└─ ERASE ALL UNPROTECTED ─┘

 �─── FROM (output-data-location) ─┬─ TO (end-output-data-location) ─┬─ ; ────��

└─ LENGTH (output-data-length) ───┘

 Parameters

WAIT/NOWAIT
Indicates whether the write operation is to be synchronous or asynchronous.

WAIT
Specifies that the write operation will be synchronous; the issuing task will
automatically relinquish control to the system and wait for completion of the
write operation before continuing processing. WAIT is the default.

NOWAIT
Specifies that the write operation will be asynchronous; the issuing task will
continue executing.

Note: If NOWAIT is specified, the program must issue a CHECK
TERMINAL request (described earlier in this section) before
performing any other I/O operation.

NEWPAGE/EAU
Specifies the mechanism to be used with the write operation.

NEWPAGE
Activates the page-eject (SYSINOUT devices) or erase-write (3270-type
devices) mechanism to erase the contents of a screen. If NEWPAGE is not
specified, the WRITE TERMINAL request will write over rather than erase
data displayed on the terminal. The keywords NEWPAGE and ERASE are
synonymous.

EAU
Activates (for 3270-type devices only) the erase-all-unprotected mechanism.
Following a WRITE TERMINAL EAU function, only protected fields remain
on the terminal. If EAU is specified, the FROM clause (described below)
need not be specified.

FROM (output-data-location)
Specifies the program variable-storage entry of the output data stream.
Output-data-location is the symbolic name of a user-defined field. The length of
the output data stream is determined by one of the following specifications:

Chapter 6. Data Manipulation Language Statements 6-209

6.76 WRITE TERMINAL (DC/UCF)

TO (end-output-data-location)
Indicates the end of the output data stream and is specified following the last
data-item entry in output-data-location. End-output-data-location is the
symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH (output-data-length)
Defines the length, in bytes, of the output data stream. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Example: The following statement illustrates an asynchronous basic mode request to
write data to the terminal from the specified location in program variable storage:

 WRITE TERMINAL

 NOWAIT

FROM (TERM_LINE) LENGTH (72);

Status codes: Upon completion of the WRITE TERMINAL function, the
ERROR_STATUS field in the the IDMS-DC communications block indicates the
outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4525 The output operation has been interrupted; the terminal operator has
pressed ATTENTION or BREAK.

4526 A logical error (for example, an invalid control character) has been
encountered in the output data stream.

4527 A permanent I/O error has occurred during processing.

4528 The dial-up line for the terminal has been disconnected.

4531 The terminal request block (TRB) contains an invalid field,
indicating a possible error in the program's parameters.

4532 The derived length of the specified output data area is zero or
negative.

4539 The terminal associated with the issuing task is out of service.

6-210 CA-IDMS DML Reference — PL/I

6.77 WRITE THEN READ TERMINAL (DC/UCF)

6.77 WRITE THEN READ TERMINAL (DC/UCF)

The WRITE THEN READ TERMINAL statement requests a transfer of data from
program variable storage to the terminal buffer and, when the terminal operator has
completed entering data, a transfer of that data back to program variable storage.

 Syntax

��─── WRITE ─┬────────┬─ READ TERMIMAL ─┬──────────┬──────────────────────────�

└─ THEN ─┘ ├─ WAIT ← ─┤

└─ NOWAIT ─┘

 �─┬─────────────────────────────┬──�

├─┬─ NEWPAGE ─┬───────────────┤

│ └─ ERASE ───┘ │

└─┬─ EAU ───────────────────┬─┘

└─ ERASE ALL UNPROTECTED ─┘

 �─┬──┬─────────────────────────�

├─ MODIFIED ─┬─ FROM POSITION (screen-position) ─┘

└─ BUFFER ───┘

 �─── FROM (output-data-location) ─┬─ TO (end-output-data-location) ─┬────────�

└─ LENGTH (output-data-length) ───┘

 �─── INTO (input-data-location) ─┬─ TO (end-input-data-location) ───────┬────�

└─ MAX LENGTH (input-data-max-length) ─┘

 �─┬───┬─ ; ────────────────────��

└─ RETURN LENGTH INTO (input-data-actual-length) ─┘

 Parameters

WAIT/NOWAIT
Indicates whether the I/O operation is to be synchronous or asynchronous.

WAIT
Specifies that the I/O operation will be synchronous; the issuing task will
automatically relinquish control to the system and must wait for completion of
the I/O operation before processing can continue. WAIT is the default.

NOWAIT
Specifies that the I/O operation will be asynchronous; the issuing task will
continue executing.

Note: If NOWAIT is specified, the program must issue a CHECK
TERMINAL request (described earlier in this chapter) before
performing any other I/O operation.

NEWPAGE/EAU
Specifies the mechanism to be used with the write operation:

NEWPAGE
Activates the page-eject (SYSINOUT devices) or erase-write (3270-type
devices) mechanism to erase the contents of a screen. If NEWPAGE is not
specified, the WRITE TERMINAL request will write over rather than erase

Chapter 6. Data Manipulation Language Statements 6-211

6.77 WRITE THEN READ TERMINAL (DC/UCF)

data displayed on the terminal. The keywords NEWPAGE and ERASE are
synonymous.

EAU
Activates (for 3270-type devices only) the erase-all-unprotected mechanism.
Following a WRITE TERMINAL EAU function, only protected fields remain
on the terminal. If EAU is specified, the FROM clause (described below)
need not be specified.

MODIFIED/BUFFER
Transfers (for 3270-type devices only) data to the application program without
requiring the terminal operator to signal completion of data entry.

MODIFIED
Reads all modified fields in the terminal buffer into program variable storage.

BUFFER
Executes a READ BUFFER command that reads the entire contents of the
terminal buffer into the program variable storage.

FROM POSITION (screen-position)
Defines the buffer address (screen position) at which the read will start.
Screen-position is either the symbolic name of a user-defined FIXED
BINARY(31) field or the address itself enclosed in quotation marks.

FROM (output-data-location)
Specifies the program variable-storage entry of the output data stream.
Output-data-location is the symbolic name of a user-defined field. The length of
the output data stream is determined by one of the following specifications:

TO (end-output-data-location)
Indicates the end of the output data stream and is specified following the last
data-item entry in output-data-location. End-output-data-location is the
symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH (output-data-length)
Defines the length, in bytes, of the output data stream. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data stream, or the length itself expressed as a numeric constant.

INTO (input-data-location)
Specifies the program variable-storage entry of the data area reserved for the input
data stream. Input-data-location is the symbolic name of a user-defined field.
The length of the input data stream is determined by one of the following
specifications:

TO (end-input-data-location)
Indicates the end of the data area reserved for the input data stream and is
specified following the last data-item entry in input-data-location.
End-input-data-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the data area
reserved for the input data stream.

6-212 CA-IDMS DML Reference — PL/I

6.77 WRITE THEN READ TERMINAL (DC/UCF)

MAX LENGTH (input-data-max-length)
Defines the length, in bytes, of the data area reserved for the input data
stream. Input-data-max-length is either the symbolic name of a user-defined
field that contains the length of the data stream, or the length itself expressed
as a numeric constant.

If the input data stream is larger than the data area reserved in program
variable storage, the system truncates the data stream to fit the available
space.

RETURN LENGTH INTO (input-data-actual-length)
Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic name of a user-defined field.
If the data stream has been truncated, input-data-actual-length contains the
original length before truncation.

Example: The following statement illustrates a basic mode request to write data
from the program (OUTPUT_LINE) to the terminal, read the data from the terminal to
the specified location (INPUT_LINE) in the program, and return the actual length of
the input data stream (LINE_LENGTH) to variable storage:

WRITE THEN READ TERMINAL

 WAIT

FROM (OUTPUT_LINE) TO (END_INPUT_LINE)

INTO (INPUT_LINE) MAX LENGTH (8�)

RETURN LENGTH INTO (LINE_LENGTH);

Status codes: Upon completion of the WRITE THEN READ TERMINAL
function, the ERROR_STATUS field in the IDMS-DC communications block indicates
the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4519 The input area specified for the return of data is too small; the
returned data has been truncated to fit the available space.

4525 The output operation has been interrupted; the terminal operator has
pressed ATTENTION or BREAK.

4526 A logical error (for example, an invalid control character) has been
encountered in the output data stream.

4527 A permanent I/O error has occurred.

4528 The dial-up line for the terminal has been disconnected.

4531 The terminal request block (TRB) contains an invalid field,
indicating a possible error in the program's parameters.

4532 The derived length of the specified I/O data area is zero or
negative.

Chapter 6. Data Manipulation Language Statements 6-213

6.77 WRITE THEN READ TERMINAL (DC/UCF)

Status code Meaning

4535 Storage for the input buffer cannot be acquired because the
specified program variable-storage entry has been allocated.

4538
The specified program variable-storage entry has not been allocated
and the GET STORAGE option has not been specified.

4539 The terminal device associated with the issuing task is out of
service.

6-214 CA-IDMS DML Reference — PL/I

6.78 Logical-record clauses (WHERE and ON)

6.78 Logical-record clauses (WHERE and ON)

Logical-record clauses are used with any of the four DML statements that access
logical records (that is, OBTAIN, MODIFY, STORE, or ERASE). The logical-record
clauses are as follows:

■ WHERE — Specifies criteria used to select and/or criteria used to limit the
selection of logical-record occurrences.

■ ON — Tests for a specific path status returned to indicate the result of a
logical-record DML statement.

The following subsections describe the WHERE and ON clauses.

 6.78.1 WHERE

The WHERE clause has two major functions:

■ To direct the program to a path, predefined in the subschema by the DBA and
transparent to the application program. This allows you to access the database
without issuing specific instructions for navigating the database.

■ To specify selection criteria to be applied to a logical record. This allows the
program to specify attributes of the desired logical record, thereby reducing the
need for the program to inspect multiple logical records to isolate the logical
record of interest.

The WHERE clause is issued in the form of a boolean expression that consists of
comparisons and keywords connected by boolean operators (AND, OR, and NOT).
The format of the WHERE clause follows PL/I syntax rules (that is, operands or
operators are separated by a blank).

Note:

If you use the WHERE clause, you must specify the 48-character set in your
source program; IDMSDMLP assumes the use of the 48-character set when it
generates LRF code. For further information, see Chapter 2, “DML
Precompiler Options” on page 2-1.

��─── WHERE (─┬───────────┬─┬─ dba-designated-keyword ─┬─────────────────────�

└─┬─ NOT ─┬─┘ └─ comparison ─────────────┘
└─ ¬ ───┘

 ┌───┐

 �─↓─┬───┬─┴─) ────────────��

├─┬─ AND ┌─┬─┬──────────┬─┬─ dba-designated-keyword ─┬┘

│ └─ & ──┘ │ └┬─ NOT ─┬─┘ └─ comparison ─────────────┘
└─┬─ OR ─┬─┘ └─ ¬ ───┘

└─ │ ──┘

Expansion of comparison

Chapter 6. Data Manipulation Language Statements 6-215

6.78 Logical-record clauses (WHERE and ON)

��─┬─ literal ──┬─┬─ CONTAINS ─┬──�

│ ┌────────────┐ │ ├─ MATCHES ──┤

├─↓─ group-id.─┴─ idd-defined-variable-field-name ───────┤ ├─┬─ EQ ─┬───┤

└─ arithmetic-expression ────────────────────────────────┘ │ └─ = ──┘ │

├─┬─ NE ─┬───┤

│ └─ ¬= ─┘ │

├─┬─ GT ─┬───┤

│ └─ > ──┘ │

├─┬─ LT ─┬───┤

│ └─ < ──┘ │

├─┬─ GE ─┬───┤

│ └─ >= ─┘ │

└─┬─ LE ─┬───┘

└─ <= ─┘

 �─┬─ literal ──┬─────────────────��

 │ ┌────────────┐ │

├─↓─ group-id.─┴─ variable-field-name ───────────────────┤

 │ ┌────────────┐ │

├─↓─ group-id.─┴─ logical-record-field-name ─┬─────────┬─┤

│ └─ OF LR ─┘ │

└─ arithmetic-expression ────────────────────────────────┘

 Parameters

dba-designated-keyword
Specifies a DBA-designated keyword to be applied to the logical record that is the
object of the command. Dba-designated-keyword is a keyword specified by the
DBA that is applicable to the logical record named in the command; it can be no
longer than 32 characters. The keyword represents an operation to be performed
at the path level and serves only to route the logical-record request to the
appropriate, predetermined path.

A path must exist to service a request that issues dba-designated-keyword. If no
such path exists, the DML precompiler flags this condition by issuing an error
message.

comparison
Specifies a comparison operation to be performed, using the indicated operands
and operators. It also serves to direct the logical-record request to a path.

Individual comparisons and keywords are connected by the boolean operators
AND, OR, and NOT. Parentheses can be used to clarify a multiple-comparison
boolean expression or to override the precedence of operators.

literalidd-defined-variable-field-namearithmetic-expression
Identifies a left or right comparison operand.

literal
Specifies a literal value. Literal can be any alphanumeric or numeric literal.
Alphanumeric literals must be enclosed in quotation marks.

idd-defined-variable-field-name
Specifies a program variable storage field predefined in the dictionary.
Idd-defined-variable-field-name must be an elementary element. It cannot be
a group element. Group elements can only be used for qualification.

6-216 CA-IDMS DML Reference — PL/I

6.78 Logical-record clauses (WHERE and ON)

The optional qualifier group-id uniquely identifies the named variable field.
This qualifier is required if idd-defined-variable-field-name is not unique
within program variable storage. Group-id names the group element that
contains the field. A maximum of 15 different group-id qualifiers can be
specified to identify as many as 15 levels of group elements.

arithmetic-expression
Specifies an arithmetic expression designated as a unary minus (-), unary plus
(+), simple arithmetic operation, or compound arithmetic operation.
Arithmetic operators permitted in an arithmetic expression are add (+),
subtract (-), multiply (*), and divide (/). Operands can be literals,
variable-storage fields, and logical-record fields as described above. On the
left side of the comparison you cannot use a key value.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE
Specifies the comparison operator. Operators are evaluated in the following order:

1. Comparisons enclosed in parentheses

2. Arithmetic, comparison, and boolean operators by order of precedence, from
highest to lowest:

a. Unary plus or minus in an arithmetic expression

b. Multiplication or division in an arithmetic expression

c. Addition or subtraction in an arithmetic expression

d. MATCHES or CONTAINS comparison operators

e. EQ, NE, GT, LT, GE, LE comparison operators

f. NOT boolean operator

g. AND boolean operator

h. OR boolean operator

3. From left to right within operators of equal precedence

CONTAINS
Is true if the value of the right operand occurs in the value of the left
operand. Both operands included with the CONTAINS operator must be
alphanumeric values and elementary elements.

MATCHES
Is true if each character in the left operand matches a corresponding character
in the right operand (the mask). When MATCHES is specified, LRF
compares the left operand with the mask, one character at a time, moving
from left to right. The result of the match is either true or false: the result is
true if the end of the mask is reached before encountering a character in the
left operand that does not match a corresponding character in the mask. The
result is false if LRF encounters a character in the left operand that does not
match a mask character.

Three special characters can be used in the mask to perform pattern matching:
@, which matches any alphabetic character; #, which matches any numeric

Chapter 6. Data Manipulation Language Statements 6-217

6.78 Logical-record clauses (WHERE and ON)

character; and *, which matches any alphabetic or numeric character. Both
the left operand and the mask must be alphanumeric values and elementary
elements.

EQ
Is true if the value of the left operand is equal to the value of the right
operand.

NE
Is true if the value of the left operand is not equal to the value of the right
operand.

GT
Is true if the value of the left operand is greater than the value of the right
operand.

LT
Is true if the value of the left operand is less than the value of the right
operand.

GE
Is true if the value of the left operand is greater than or equal to the value of
the right operand.

LE
Is true if the value of the left operand is less than or equal to the value of the
right operand.

logical-record-field-name
Specifies a data field that participates in the named logical record.
Logical-record-field-name must be an elementary element. It cannot be a group
element. Group elements can only be used for qualification.

The optional qualifier group-id uniquely identifies the named logical-record field.
This qualifier is required if logical-record-field-name is not unique within all
subschema records, including those that are not part of the logical record, and all
non CA-IDMS/DB records copied into the program. Group-id names the group
element or database record that contains the field. A maximum of 15 different
group-id qualifiers can be specified to identify as many as 15 levels of group
elements.

The optional OF LR parameter specifies that the value of the named field at the
time that the request is issued will be used throughout processing of the request.
If the value of the field changes during request processing, LRF will continue to
use the original value. If the OF LR entry is not included and the value of the
field changes during request processing, the new field value in variable storage
will be used if the field is required for further request processing.

Usage of the WHERE clause: If the WHERE clause compares a CALC-key field
to a literal, the literal's format must correspond exactly to the CALC-key definition.
Enclose the literal in quotation marks if the CALC key has a usage of DISPLAY, and
use leading zeros if the literal consists of fewer characters than the field's picture. For
example, if the calc-key-field CALC key is defined as CHAR (3), code the WHERE
clause as follows:

6-218 CA-IDMS DML Reference — PL/I

6.78 Logical-record clauses (WHERE and ON)

WHERE (calc-key-field) EQ '�54';

The WHERE clause can contain as many comparisons and keywords as required to
specify the criteria to be applied to the logical record. If necessary, the value of the
SIZE parameter in the INCLUDE IDMS SUBSCHEMA_LR_CTRL statement can be
increased to accommodate very large and complex WHERE clause specifications.
Processing efficiency is not affected by the composition of the WHERE clause (other
than the logical order of the operators, as noted below), since LRF automatically uses
the most efficient path to process the logical-record request.

Examples: The following logical-record request uses a DBA-designated keyword
(PROGRAMMER_ANALYSTS) to direct LRF to a DBA-defined access path:

OBTAIN NEXT RECORD (EMP_JOB_LR)

 WHERE (PROGRAMMER_ANALYSTS);

The following logical-record request uses boolean selection criteria to specify the
desired occurrence of EMP_JOB_LR:

OBTAIN RECORD (EMP_JOB_LR)

WHERE (OFFICE_CODE_�45� EQ '��1');

 6.78.2 ON clause

The ON clause tests for a specific path status returned to indicate the result of the
statement. If LRF returns the specified path status, the imperative statement included
in the ON clause is executed; if the specified path status is not returned, the imperative
statement included in the ON clause is ignored and IDMS_STATUS is performed.

The ON clause tests for a standard or DBA-defined path status, which is in the form
of a 1- to 16-character unquoted string. Path statuses are issued during execution of
the path selected to service the request.

Standard path statuses: Standard path statuses are as follows:

■ LR_FOUND — Returned when the logical-record request has been successfully
executed. This status can be returned as the result of any of the four LRF DML
statements. When LR_FOUND is returned, the ERROR_STATUS field in the
IDMS communications block contains 0000.

■ LR_NOT_FOUND — Returned when the logical record specified cannot be
found, either because no such record exists or because all such occurrences have
already been retrieved. This status can be returned as the result of any of the four
LRF DML statements, provided that the path to which LRF is directed includes
retrieval logic. When LR_NOT_FOUND is returned, the ERROR_STATUS field
in the IDMS communications block contains 0000.

Note: A successful STORE can return LR_NOT_FOUND if its WHERE clause
references a logical-record field and the STORE path performs no
OBTAINs.

■ LR_ERROR — Returned when a logical-record request is issued incorrectly or
when an error occurs in the processing of the path selected to service the request.

Chapter 6. Data Manipulation Language Statements 6-219

6.78 Logical-record clauses (WHERE and ON)

When LR_ERROR is returned, the type of error-status code returned to the
program in the ERROR_STATUS field in the IDMS-DB communications block
differs according to the type of error:

– When the error occurs in the logical-record request, the ERROR_STATUS
field contains an error-status code issued by LRF (major code of 20).

– When an error occurs in logical-record path processing, the
ERROR_STATUS field contains an error-status code issued by the DBMS
(major code from 00 to 19). For more information on error-status codes, refer
to Chapter 3, “Communications Blocks and Error Detection” on page 3-1.

 Syntax

��─── ON LR_STATUS (path-status) imperative-statement;───────────────────────��

 Parameters

path-status
Names the path status that will be tested. Path-status must be a 1- to 16-character
alphanumeric value.

imperative-statement
Specifies the program action to be taken if the indicated path status results from
the logical-record request.

Example: The following statements use the path status LR_NOT_FOUND in two
different ways. If LR_NOT_FOUND occurs following the initial statement, an
LR_MISSING message is output; if LR_NOT_FOUND occurs in subsequent
statements, an END_OF_LR message is output.

OBTAIN FIRST RECORD (EMP_JOB_LR)

WHERE (OFFICE_CODE_�45� EQ OFFICE_CODE_IN);

ON LR_STATUS (LR_NOT_FOUND)

 CALL LR_MISSING;

 .

 .

 .

OBTAIN NEXT RECORD (EMP_JOB_LR)

WHERE (OFFICE_CODE_�45� EQ OFFICE_CODE_IN);

ON LR_STATUS (LR_NOT_FOUND)

 CALL END_OF_LR;

 .

 .

 .

CALL OBTAIN_REST_LR;

Status codes: The following codes are returned to the ERROR_STATUS field in
the IDMS-DB or IDMS-DC communications block when an LR_ERROR path status is
returned to the LR_STATUS field in the LRC block:

6-220 CA-IDMS DML Reference — PL/I

6.78 Logical-record clauses (WHERE and ON)

Status code Meaning

2001 The requested logical record was not found in the subschema.
(The path DML statement, EVALUATE, returns 0000 if true, and
2001 if false.)

2008 The named record is not in the subschema, or the specified request
is not permitted for the named record.

2010 The subschema prohibits access to logical records.

2018 A path command has attempted to access a database record that has
not been bound.

2040 The WHERE clause in an OBTAIN NEXT command directed LRF
to a different processing path than did the WHERE clause in the
preceding OBTAIN command for the same logical record.

2041 The request's WHERE clause cannot be matched to a path in the
subschema.

2042 The logical-record path for the request specifies return of the
LR_ERROR status.

2043 Bad or inconsistent data was encountered in the logical-record
buffer during evaluation of the request's WHERE clause.

2044 The request's WHERE clause does not include data required by the
logical-record path.

2045 A subscript value in a WHERE clause is either less than zero or
greater than its maximum allowed value.

2046 A program check has revealed an arithmetic exception (for
example, overflow, underflow, significance, divide) during
evaluation of a WHERE clause.

2063 The request's WHERE clause contains a keyword that exceeds the
16-character maximum.

2064 The path command has attempted to access a CALC data item that
has not been defined properly in the subschema.

2072 The request's WHERE clause is too long to be evaluated in the
available work area.

Chapter 6. Data Manipulation Language Statements 6-221

6.78 Logical-record clauses (WHERE and ON)

6-222 CA-IDMS DML Reference — PL/I

Appendix A. DML Precompile, PL/I Compile, and
Link-Edit JCL

A.1 About this appendix . A-3
A.2 Compiling a PL/I program . A-4

A.2.1 Under OS/390 . A-6
A.2.2 Under VSE/ESA . A-10
A.2.3 Under VM/ESA . A-17

A.3 Link-edit considerations . A-20

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-1

A-2 CA-IDMS DML Reference — PL/I

A.1 About this appendix

A.1 About this appendix

This appendix presents the JCL used to prepare PL/I source code that contains DML
statements. Link-edit considerations are also discussed. JCL samples are included.

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-3

A.2 Compiling a PL/I program

A.2 Compiling a PL/I program

To compile a PL/I program under the DML precompiler:

1. Execute the program IDMSDMLP

2. Execute the PL/I compiler

 3. Link edit

Input to IDMSDMLP consists of source code written in PL/I and DML,
protocol/control information, and dictionary record descriptions. Output from
IDMSDMLP includes:

■ A source PL/I program

■ A DML source listing and diagnostics

Input to the PL/I compiler consists of the source program produced by IDMSDMLP.
Output includes:

■ An object program

 ■ PL/I listings

Input to the linkage editor consists of the object program produced by the PL/I
compiler. Output includes:

■ A load module

■ A link-edit map

The following figure illustrates the steps involved in compiling a PL/I program.

A-4 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

The JCL used to compile and link edit the DMLP source statements under the
CA-IDMS/DB central version are shown in this appendix. Local mode considerations
are noted where appropriate.

Note: IBM PL/I compilers running under VSE/ESA do not generate reentrant code.
Accordingly, if your applications are large, multiple user deadlocks may result
because of space limitations.

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-5

A.2 Compiling a PL/I program

 A.2.1 Under OS/390

Executing under the central version: IDMSDMLP (central version) (OS/390)

//���

//�� PRECOMPILE PL/I PROGRAM ��

//���

//precomp EXEC PGM=IDMSDMLP,REGION=1�24K,

// PARM='optional parameters'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYS��1 DD UNIT=disk,SPACE=(TRK,(1�,1�))

//SYS��2 DD UNIT=disk,SPACE=(TRK,(1�,1�))

//SYS��3 DD UNIT=disk,SPACE=(TRK,(1�,1�))

//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSLST DD SYSOUT=A

//SYSIDMS DD �

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/�

//SYSIPT DD �

PL/I DML source statements

/�

//���

//�� COMPILE PL/I PROGRAM ��

//���

//plicmp EXEC PGM=IEL�AA,REGION=3��K,

// PARM='DECK,LIST,OFFSET,STORAGE,NOP'

//STEPLIB DD DSN=sys1.pliopt,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(1�24,(2��,5�),,CONTIG,ROUND),

// DCB=BLKSIZE=6144

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&&source,DISP=(OLD,DELETE)

//���

//�� LINK PROGRAM MODULE ��

//���

//link EXEC PGM=IEWL,REGION=3��K,PARM='LET,LIST,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(2�,5))

//SYSLIB DD DSN=sys1.plibase,DISP=SHR

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD �

 INCLUDE loadlib(IDMS) Required, except omit for CICS

 INCLUDE loadlib(IDMSCANC) Required for BATCH and DC_BATCH

if using IDMS_STATUS module

 INCLUDE loadlib(IDMSOPTI) Optional; BATCH and DC_BATCH only

 INCLUDE loadlib(IDMSCINT) Required for CICS, otherwise omit

 ENTRY userentry

 NAME userprog(R)

/�

//�

precomp Name of the precompile step

optional parameters LIST/NOLIST determines whether or not a DML
source listing is generated. DMLIST/NODMLIST in
the source code overrides this parameter.

A-6 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

DICTNAME specifies the dictionary you want to
access. DICTNAME can also be specified as a
SYSIDMS parameter.

DEBUG=CARD causes each input record from source
to be written to SYSLST as it is processed. This
allows you to identify any records that may cause a
processing loop.

SCHEMA = schema-name specifies the default
schema-name qualifier for the precompiler to use when
processing an INCLUDE TABLE statement that does
not supply a qualifier.

NOINSTALL specifies that the precompiler should only
check syntax.

SQL=NO/89/FIPS specifies the SQL syntax standard
that the precompiler should apply when checking the
validity of SQL statements in the program.

Option NO is the default; means that compliance with a
named SQL standard is not checked or enforced, and
all CA-IDMB/DB extentions are permitted.

Option 89 directs the precompiler to use ANSI
X3.135-1989 (Rev), Database Language SQL with
integrity enhancement as the standard for compliance.

Option FIPS directs the precompiler to use FIPS PUB
127-1, Database Language SQL as the standard for
compliance.

DATE=ISO/USA/EUR/JIS specifies the format of the
DATE data type to be used for communication between
the program and the database when the access module
is executed.

TIME=ISO USA EUR/JIS specifies the format of the
TIME data type to be used for communication between
the program and the database when the access module
is executed.

For information on EXEC PGM parameters that are
applicable to SQL access, refer to the CA-IDMS SQL
Programming document.

idms.dba.loadlib Dataset name of the load library containing the DMCL
and database name table load modules

idms.loadlib Dataset name of the load library containing CA-IDMS
executable modules

sysctl DDname of SYSCTL file

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-7

A.2 Compiling a PL/I program

Note: Depending on the CV operating environment, an IDMSOPTI module link
edited with IDMSDMLP can be used in place of or in addition to the SYSCTL
file.

EXEC PGM parameters: You can specify LIST/NOLIST, DICTNAME, or
DEBUG=CARD as IDMSDMLP parameters, or you can optionally include your
site-specific parameters in an Assembler module (having the CSECT name of
EDBPPARM) and link that module with IDMSDMLP. For example:

EDBPPARM

 DC 'NOLIST'

 DC X'��'

 END

Runtime parameters: To specify a dictionary or DMCL to access at runtime, you
can include DICTNAME and DMCL parameters in a SYSIDMS DD statement in the
JCL (see previous sample JCL).

�� For complete information on SYSIDMS runtime parameters, refer to CA-IDMS
Database Administration.

idms.sysctl Dataset name of SYSCTL file

dcmsg DDname of the dictionary message area

idms.sysmsg.ddldcmsg Dataset name of the dictionary message area
(DDLDCMSG)

&&source Name of temporary dataset output from DML
precompiler

link Name of the link edit step

dmcl-name Name of the DMCL to access at runtime

dictionary-name Name of the dictionary to access at runtime

plicmp Name of the PL/I compile step

sys1.pliopt PL/I system library

&&object Name of temporary dataset output from PL/I compiler

disk Symbolic device name

sys1.plibase Name of the load library containing subroutines that
may need to be linked to the user program

user.loadlib Name of a user application load library

userentry Program entry point

userprog Name of the user program in the load library

A-8 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

Executing in local mode:

IDMSDMLP (local mode) (OS/390)

//���

//�� PRECOMPILE PL/I PROGRAM ��

//���

//precomp EXEC PGM=IDMSDMLP,REGION=1�24K,

// PARM='optional parameters'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dictb DD DSN=idms.appldict.ddldml,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

//SYS��1 DD UNIT=disk,SPACE=(TRK,(1�,1�))

//SYS��2 DD UNIT=disk,SPACE=(TRK,(1�,1�))

//SYS��3 DD UNIT=disk,SPACE=(TRK,(1�,1�))

//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSLST DD SYSOUT=A

//SYSIDMS DD �

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/�

//SYSIPT DD �

PL/I DML source statements

/�

//���

//�� COMPILE PL/I PROGRAM ��

//���

//plicmp EXEC PGM=IEL�AA,REGION=3��K,

// PARM='DECK,LIST,OFFSET,STORAGE,NOP'

//STEPLIB DD DSN=sys1.pliopt,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(1�24,(2��,5�),,CONTIG,ROUND),

// DCB=BLKSIZE=6144

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&&source,DISP=(OLD,DELETE)

//���

//�� LINK PROGRAM MODULE ��

//���

//link EXEC PGM=IEWL,REGION=3��K,PARM='LET,LIST,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(2�,5))

//SYSLIB DD DSN=sys1.plibase,DISP=SHR

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD �

 INCLUDE loadlib(IDMS) Required, except omit for CICS

 INCLUDE loadlib(IDMSCANC) Required for BATCH and DC_BATCH

if using IDMS_STATUS module

 INCLUDE loadlib(IDMSOPTI) optional; BATCH and DC_BATCH only

 INCLUDE loadlib(IDMSCINT) Required for CICS, otherwise omit

 ENTRY userentry

 NAME userprog(R)

/�

//�

dictdb DDname of the application dictionary definition area

idms.appldict.ddldml Dataset name of the application dictionary definition
area

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-9

A.2 Compiling a PL/I program

�� For information about other variables, see the table below the JCL for central
version.

sysjrnl DDname of the tape journal file

idms.tapejrnl Dataset name of the tape journal file

tape Symbolic device name

 A.2.2 Under VSE/ESA

Executing under the central version: IDMSDMLP (VSE/ESA)

� step1

// EXEC PROC=IDMSLBLS

// UPSI b

// DLBL idmspch,'temp.dmlp',�

// EXTENT sys�2�,nnnnnn,,,ssss,llll

// ASSGN sys�2�,DISK,VOL=nnnnnn,SHR

// EXEC IDMSDMLP

DMCL=dmcl-name

DICTNAME=dictionary-name

Other optional SYSIDMS parameters

/�

PL/I DML source statements

/�

� step2

// DLBL IJSYSIN,'temp.dmlp',�

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL,NODECK,NOSYM

 PHASE userprog,�

// EXEC PL/I

� step3

 CLOSE SYSIPT,SYSRDR

ENTRY (dmlp)

// EXEC LNKEDT

/�

Note: You can define a SYSCTL file in the JCL to override the IDMSOPTI
statement for the back-end system:

// DLBL sysctl,'idms.sysctl',,DA

// EXTENT sys��8,nnnnnn

// ASSGN sys��8,DISK,VOL=nnnnnn,SHR

IDMSLBLS Procedure containing all of the file definitions required
by the system

�� For a complete listing of IDMSLBLS, see
"IDMSLBLS procedure", later in this section.

b Appropriate UPSI switch, 1-8 characters, if specified in
the IDMSOPTI module

idmspch Filename of dataset output from the DML precompiler

temp.dmlp File ID of the dataset output from the DML
precompiler

A-10 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

SYSIDMS parameters: You can use SYSIDMS parameters to specify information
about your runtime environment. The SYSIDMS parameters DICTNAME and DMCL
are used in this JCL stream.

�� For information on other optional SYSIDMS parameters, refer to CA-IDMS
Database Administration.

Output to disk or tape file: To route punched output to a sequential disk file or to
a tape file, use a SYSPCH statement in the JCL.

Executing in local mode: To execute IDMSDMLP in local mode:

■ Remove the UPSI statement

■ Add the following statements in the IDMSDMLP step:

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys��9,TAPE,VOL=nnnnnn

INCLUDE statements: Provide INCLUDE statements in local mode or central
version JCL as follows. Place the following statements in the second step, before
EXEC PL/I:

sys�2� Logical unit assignment of DMLP output

nnnnnn Volume serial identifier of appropriate disk volume

dmcl-name Name of the DMCL to access at runtime

dictionary-name Name of the dictionary to access at runtime

ssss Starting track (CKD) or block (FBA) of disk extent

llll Number of tracks (CKD) or blocks (FBA) of disk
extent

userprog Name of program in the library

dmlp Name of PL/I DML module

sysctl Filename of the SYSCTL file

idms.sysctl File ID of the SYSCTL file

sys��8 Logical unit assignment of the SYSCTL file

sysjrnl Filename of the tape journal file

idms.tapejrnl File ID of the tape journal file

f File number of the tape journal file

sys��9 Logical unit assignment for journal file

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-11

A.2 Compiling a PL/I program

ACTION NOAUTO Prevents multiple inclusions of IDMS

INCLUDE IDMS IDMS interface for use with COMRG

INCLUDE IDMSOPTI You can omit IDMSOPTI for local mode

INCLUDE IDMSCANC Local mode abort entry point

(omit IDMSCANC if TP application)

INCLUDE IDMSCINT For CICS only, replaces INCLUDE IDMS

IDMSLBLS procedure: IDMSLBLS is a procedure that contains file definitions for
the dictionaries, sample databases, disk journal files, and SYSIDMS file provided
during installation.

You can tailor the following IDMSLBLS procedure (provided at installation) to reflect
the filenames and definitions in use at your site. Reference IDMSLBLS as shown in
the previous VSE/ESA JCL job stream.

A-12 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

──────── LIBDEFS ────────

// LIBDEF �,SEARCH=idmslib.sublib

// LIBDEF �,CATALOG=user.sublib

/� ───────────────────────── LABELS ─────────────────────────

// DLBL idmslib,'idms.library',1999/365

// EXTENT ,nnnnnn,,,ssss,15��

// DLBL dccat,'idms.system.dccat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,31

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatl,'idms.system.dccatlod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatx,'idms.system.dccatx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcdml,'idms.system.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,4�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem,'idms.sqldemo.indxdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',1999/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-13

A.2 Compiling a PL/I program

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod,'idms.asfdict.asflod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,4�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN,'idms.asfdict.asfdefn',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',�,SD

/+

/�

idmslib.sublib Name of the sublibrary within the library containing
CA-IDMS modules

user.sublib Name of the sublibrary within the library containing
user modules

idmslib Name of the file containing CA-IDMS modules

idms.library ID associated with the file containing CA-IDMS
modules

SYSnnn Logical unit of the volume for which the extent is
effective

nnnnnn Volume serial identifier of appropriate disk volume

ssss Starting track (CKD) or block (FBA) of disk extent

dccat Filename of the system dictionary catalog (DDLCAT)
area

idms.system.dccat ID of the system dictionary catalog (DDLCAT) area

A-14 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

dccatl Filename of the system dictionary catalog load
(DDLCATLOD) area

idms.system.dccatlod ID of the system dictionary catalog load
(DDLCATLOD) area

dccatx Name of the system dictionary catalog index
(DDLCATX) area

idms.system.dccatx ID of the system dictionary catalog index (DDLCATX)
area

dcdml Name of the system dictionary definition (DDLDML)
area

idms.system.ddldml ID of the system dictionary definition (DDLDML) area

dclod Name of the system dictionary definition load
(DDLDCLOD) area

idms.system.ddldclod ID of the system dictionary definition load
(DDLDCLOD) area

dclog Name of the system log area (DDLDCLOG) area

idms.system.ddldclog ID of the system log (DDLDCLOG) area

dcrun Name of the system queue (DDLDCRUN) area

idms.system.ddldcrun ID of the system queue (DDLDCRUN) area

dcscr Name of the system scratch (DDLDCSCR) area

idms.system.ddldcscr ID of the system scratch (DDLDCSCR) area

dcmsg Name of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg ID of the system message (DDLDCMSG) area

dclscr Name of the local mode system scratch (DDLOCSCR)
area

idms.sysloc.ddlocscr ID of the local mode system scratch (DDLOCSCR)
area

dirldb Name of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.ddldml ID of the IDMSDIRL definition (DDLDML) area

dirllod Name of the IDMSDIRL definition load (DDLDCLOD)
area

idms.sysdirl.dirllod ID of the IDMSDIRL definition load (DDLDCLOD)
area

empdemo Name of the EMPDEMO area

idms.empdemo1 ID of the EMPDEMO area

insdemo Name of the INSDEMO area

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-15

A.2 Compiling a PL/I program

idms.insdemo1 ID of the INSDEMO area

orgdemo Name of the ORGDEMO area

idms.orgdemo1 ID of the ORDDEMO area

empldem Name of the EMPLDEMO area

idms.sqldemo.empldemo ID of the EMPLDEMO area

infodem Name of the INFODEMO area

idms.sqldemo.infodemo ID of the INFODEMO area

projdem Name of the PROJDEMO area

idms.projseg.projdemo ID of the PROJDEMO area

indxdem Name of the INDXDEMO area

idms.sqldemo.indxdemo ID of the INDXDEMO area

sysctl Name of the SYSCTL file

idms.sysctl ID of the SYSCTL file

secdd Name of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec ID of the system user catalog (DDLSEC) area

dictdb Name of the application dictionary definition area

idms.appldict.ddldml ID of the application dictionary definition (DDLDML)
area

dloddb Name of the application dictionary definition load area

idms.appldict.ddldclod ID of the application dictionary definition load
(DDLDCLOD) area

sqldd Name of the SQL catalog (DDLCAT) area

idms.syssql.ddlcat ID of the SQL catalog (DDLCAT) area

sqllod Name of the SQL catalog load (DDLCATL) area

idms.syssql.ddlcatl ID of SQL catalog load (DDLCATL) area

sqlxdd Name of the SQL catalog index (DDLCATX) area

idms.syssql.ddlcatx ID of the SQL catalog index (DDLCATX) area

asfdml Name of the asf dictionary definition (DDLDML) area

idms.asfdict.ddldml ID of the asf dictionary definition (DDLDML) area

asflod Name of the asf dictionary definition load (ASFLOD)
area

idms.asfdict.asflod ID of the asf dictionary definition load (ASFLOD) area

asfdata Name of the asf data (ASFDATA) area

A-16 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

idms.asfdict.asfdata ID of the asf data area (ASFDATA) area

ASFDEFN Name of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn ID of the asf data definition area (ASFDEFN) area

j1jrnl Name of the first disk journal file

idms.j1jrnl ID of the first disk journal file

j2jrnl Name of the second disk journal file

idms.j2jrnl ID of the second disk journal file

j3jrnl Name of the third disk journal file

idms.j3jrnl ID of the third disk journal file

SYSIDMS Name of the SYSIDMS parameter file

 A.2.3 Under VM/ESA

Executing under the central version: IDMSDMLP (VM/ESA)

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSPCH DISK prgnme PL/I A

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp BLKSZE nnn

EXEC IDMSFD

OSRUN IDMSDMLP PARM='CVMACH=vmid' DML precompile step

FILEDEF TEXT DISK prgnme TEXT A

GLOBAL TXTLIB plilibvs IDMSLIB1

PL/I prgnme (OSDECK APOST LIB PL/I compile step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib LOADLIB a (RECFM V LRECL 1�24 BLKSIZE 1 �24

FILEDEF objlib1 DISK IDMSLIB1 TXTLIB A

FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF SYSLIB DISK plilibvs TXTLIB p

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

Link edit step

sysipt data a Filename, filetype, and filemode of the file that
contains PL/I DML source statements

ppp Record length of the data file

nnn Blocksize of the data file

prgnme Filename of the PL/I program

sysidms parms a Filename, filetype, and filemode of the file that
contains SYSIDMS parameters (parameters that define
your runtime environment)

vmid ID of the virtual machine running the CA-IDMS/DB
central version

plilibvs Filename of the library that contains PL/I logic modules

utextlib Filename of the user text library

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-17

A.2 Compiling a PL/I program

How to edit the SYSIDMS file: To edit the SYSIDMS file, enter these VM/ESA
commands:

XEDIT sysidms parms a (NOPROF

INPUT

 .

 .

 .

SYSIDMS parameters

 .

 .

 .

FILE

To run IDMSDMLP, include the DMCL and DICTNAME SYSIDMS parameters.

�� For information on SYSIDMS, refer to CA-IDMS Database Administration.

How to create the SYSIPT file: To create the SYSIPT file, enter these VM/ESA
commands:

XEDIT sysipt data a (NOPROF

INPUT

 .

 .

 .

DML source statements

 .

 .

 .

FILE

How to create the LINKCTL file: To create the LINKCTL file, enter these
VM/ESA commands:

XEDIT linkctl data a (NOPROF

INPUT

INCLUDE objlib(prgnme)

INCLUDE objlib1(IDMS) IDMS is required, omit for CICS

INCLUDE objlib1(IDMSCINT) IDMS is required for CICS only

INCLUDE objlib1(IDMSCANC) IDMSCANC for BATCH and DC_BATCH

ENTRY prgnme

NAME prgnme(R)

FILE

uloadlib Filename of the user load library

objlib1 DDname of the first CA-IDMS/DB object library

objlib DDname of the user object library

plilibvs Filename of the library that contains PL/I logic modules

linkctl Filename of the file that contains the linkage editor
control statements

A-18 CA-IDMS DML Reference — PL/I

A.2 Compiling a PL/I program

Executing in local mode: To execute IDMSDMLP in local mode, remove the
CVMACH parameter from OSRUN, and do one of the following:

■ Link IDMSDMLP with an IDMSOPTI program that specifies local execution
mode

■ Specify *LOCAL* as the first input parameter in the file specified in the
FILEDEF SYSIPT statement

■ Modify the OSRUN statement, as follows:

OSRUN IDMSDMLP PARM='�LOCAL�'

Note: This option is valid only if the OSRUN command is issued from a System
Product Interpreter or from an EXEC2 file.

Appendix A. DML Precompile, PL/I Compile, and Link-Edit JCL A-19

A.3 Link-edit considerations

 A.3 Link-edit considerations

The modules involved in the link edit of an application program contain six external
references. Some must be resolved depending on the mode of operation. Check
unresolved references against the following table to ensure proper linkage to the
program.

Reference Referenced by Resolved by Comments

ABORT Application IDMSCANC Should be resolved

IDMS Application IDMS Must be resolved

IDMSOPTI� IDMS IDMSOPTI
module

Must be resolved under
OS/390 if using the central
version without a SYSCTL
file, and under VSE/ESA
if using the central version

IDMSWAIT� IDMS IDMSWAIT Must be resolved if
user-written wait program
is desired; otherwise,
system routine is used

�Under OS/39�, IDMSOPTI is a weak external reference (WXTRN).

A-20 CA-IDMS DML Reference — PL/I

 Appendix B. Call Formats

B.1 About this appendix . B-3
B.2 CA-IDMS/DB call formats . B-4

B.2.1 Control statements . B-5
B.2.2 Modification statements . B-7
B.2.3 Retrieval statements . B-8
B.2.4 ACCEPT statements . B-11
B.2.5 LRF DML statements . B-12

B.3 CA-IDMS/DC call formats . B-13
B.3.1 Program management statements . B-14
B.3.2 Storage management statements . B-14
B.3.3 Task management statements . B-15
B.3.4 Time management statements . B-15
B.3.5 Scratch management statistics . B-15
B.3.6 Queue management statements . B-16
B.3.7 Terminal management statements . B-17
B.3.8 Utility statements . B-18
B.3.9 Recovery statements . B-19
B.3.10 DC_BATCH statement . B-19

Appendix B. Call Formats B-1

B-2 CA-IDMS DML Reference — PL/I

B.1 About this appendix

B.1 About this appendix

This appendix contains the call formats used by CA-IDMS/DB and CA-IDMS/DC to
execute DML commands. Each DML function can be coded using standard CALL
statements.

The tables in this appendix present the function codes and arguments that are passed to
CA-IDMS/DB and CA-IDMS/DC for execution of a DML command.

About arguments 0 and 1: Note the following information about arguments 0 and
1 when you review the tables in this appendix:

■ Argument 0 — This argument is passed for all functions. It contains
SUBSCHEMA-CTRL, the IDMS-DB or IDMS-DC communications block.

■ Argument 1 — CA-IDMS/DB passes the IDBMSCOM array as argument 1.
CA-IDMS/DC passes the DCBMSCOM array as argument 1.

Example of a call format: The following example shows the expanded call format
for a BIND RECORD statement (BIND EMPLOYEE):

CALL 'IDMS' (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'EMPLOYEE '

 ,EMPLOYEE;

);

Order of expansions: CA-IDMS/DB call expansions are presented first,
CA-IDMS/DC expansions second. Formats are grouped in different tables according
to statement function.

Appendix B. Call Formats B-3

B.2 CA-IDMS/DB call formats

B.2 CA-IDMS/DB call formats

CA-IDMS/DB passes the IDBMSCOM array as argument 1.

Arguments marked with asterisks have default values.

B-4 CA-IDMS DML Reference — PL/I

B.2 CA-IDMS/DB call formats

 B.2.1 Control statements

 ───

 Calling arguments

 Major Database statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 14 BIND RUN_UNIT 59 IDMS-DB subschema-name�

 communications

 block�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

BIND RUN_UNIT FOR 59 IDMS-DB subschema-name

 subschema-name communications

 block�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 BIND RUN_UNIT 59 IDMS-DB subschema-name� subschema- node

 NODENAME nodename communications control� or name

 block� subschema-lr-

 control�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

BIND RUN_UNIT FOR 59 IDMS-DB subschema-name subschema- node

 subschema-name communications control� or name

 NODENAME nodename block� subschema-lr-

 control�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

BIND RUN_UNIT FOR 59 IDMS-DB subschema-name subschema- node

 subschema-name communications control� or name

 DBNAME database-name block� subschema-lr-

 control�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

BIND RUN_UNIT NODENAME 59 IDMS-DB subschema-name� subschema- node

 nodename communications control� or name

 DBNAME database-name block� subschema-lr-

 control�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

BIND RUN_UNIT FOR 59 IDMS-DB subschema-name subschema- node

 subschema-name communications control� or name

 NODENAME nodename block� subschema-lr-

 DBNAME database-name control�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 BIND record-name 48 record-id record-location�

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 BIND record-name 48 record-id record-location

 TO record-location

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 BIND record-location 48 record-id record-location

 WITH record-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

BIND PROCEDURE FOR 73 procedure-name procedure-

 procedure-name TO control-location

 procedure-control-location

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

Appendix B. Call Formats B-5

B.2 CA-IDMS/DB call formats

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 �9 READY 37

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 READY area-name 37 area-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY area-name USAGE-MODE 37 area-name

 IS RETRIEVAL

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY area-nameUSAGE-MODE IS 39 area-name

 PROTECTED RETRIEVAL

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY area-name USAGE-MODE 4� area-name

IS EXCLUSIVE RETRIEVAL

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY area-name USAGE-MODE 36 area-name

 IS UPDATE

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY area-name USAGE-MODE 38 area-name

IS PROTECTED UPDATE

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY area-name USAGE-MODE 41 area-name

IS EXCLUSIVE UPDATE

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

READY USAGE-MODE IS... ��

�� Choose function code from

36-41, as shown above

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 �1 FINISH �2

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 18 COMMIT 66

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 COMMIT ALL 95

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 19 ROLLBACK 67

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

ROLLBACK CONTINUE 96

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 �6 KEEP CURRENT 87

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP EXCLUSIVE CURRENT 88

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP CURRENT record-name 89 record-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP EXCLUSIVE CURRENT 9� record-name

 record-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP CURRENT WITHIN set-name 91 set-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP EXCLUSIVE CURRENT 93 set-name

 WITHIN set-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP CURRENT WITHIN area- 93 area-name

 name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

KEEP EXCLUSIVE CURRENT 94 area-name

 WITHIN area-name

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

B-6 CA-IDMS DML Reference — PL/I

B.2 CA-IDMS/DB call formats

 ──────── ──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

 16 IF set-name IS EMPTY... 64 set-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

IF set-name IS NOT EMPTY... 65 set-name

(Upon return to user run-

unit, the Error Status indi-

cator = '����' if set is

empty; '16�1' if not empty.)

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

IF set-name MEMBER... 6� set-name

──────────────────────────── ──── ────────────── ──────────────── ───────────── ────

IF NOT set-name MEMBER... 62 set-name

(Upon return to user run-

unit, the Error Status indi-

cator = '����' if the record

(current of run-unit) is

linked into the specified

set; '16�1' if it is not a

 member.)

 ───

 B.2.2 Modification statements

 ───

 Calling arguments

Major Database statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ───────────────────────────────────── ──── ──────────── ────────── ────────── ────

 12 STORE record-name 42 record-name

 ──────── ───────────────────────────────────── ──── ──────────── ────────── ────────── ────

 �7 CONNECT record-name TO set-name 44 record-name set-name

 ──────── ───────────────────────────────────── ──── ──────────── ────────── ────────── ────

 �8 MODIFY record-name 35 record-name

 ──────── ───────────────────────────────────── ──── ──────────── ────────── ────────── ────

 11 DISCONNECT record-name FROM set-name 46 record-name set-name

 ──────── ───────────────────────────────────── ──── ──────────── ────────── ────────── ────

 �2 ERASE record-name 52 record-name

───────────────────────────────────── ──── ──────────── ────────── ────────── ────

ERASE record-name PERMANENT �3 record-name

 MEMBERS

───────────────────────────────────── ──── ──────────── ────────── ────────── ────

ERASE record-name SELECTIVE 53 record-name

 MEMBERS

───────────────────────────────────── ──── ──────────── ────────── ────────── ────

ERASE record-name ALL MEMBERS �4 record-name

 ───

Appendix B. Call Formats B-7

B.2 CA-IDMS/DB call formats

 B.2.3 Retrieval statements

 ───

 Calling arguments

 Major Database statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

 �3 FIND DB-KEY db-key 75 db-key

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND record-name DB-KEY IS db-key �6 record-name db-key

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND DB-KEY db-key 29 dbkey page-info

 PAGE_INFO page-info

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

 FIND CURRENT 3�

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND CURRENT record-name �7 record-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND CURRENT WITHIN set-name �8 set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND CURRENT WITHIN area-name �9 area-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND NEXT WITHIN set-name 14 set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND NEXT record-name WITHIN set-name 1� record-name set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND PRIOR WITHIN set-name 16 set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND PRIOR record-name WITHIN set- 12 record-name set-name

 name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND FIRST WITHIN set-name 2� set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND FIRST record-name WITHIN set- 18 record-name set-name

 name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND LAST WITHIN set-name 24 set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND LAST record-name WITHIN set-name 22 record-name set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number WITHIN set-name 78 set-name sequence-

 number

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number record-name 76 record-name set-name sequence-number

 WITHIN set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number WITHIN set-name 78 set-name sequence-

 number

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number record-name 76 record-name set-name sequence-number

 WITHIN set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND NEXT WITHIN area-name 15 area-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND NEXT record-name WITHIN area- 11 record-name area-name

 name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND PRIOR WITHIN area-name 17 area-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND PRIOR record-name WITHIN area- 13 record-name area-name

 name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

B-8 CA-IDMS DML Reference — PL/I

B.2 CA-IDMS/DB call formats

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND FIRST WITHIN area-name 21 area-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND FIRST record-name WITHIN area- 19 record-name area-name

 name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND LAST WITHIN area-name 25 area-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND LAST record-name WITHIN area- 23 record-name area-name

 name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number WITHIN area-name 79 area-name sequence-

 number

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number record-name 77 record-name area-name sequence-number

 WITHIN area-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number WITHIN area-name 79 area-name sequence-

 number

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND sequence-number record-name 79 record-name area-name

 WITHIN area-name c.sequenc

 e-number

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND OWNER WITHIN set-name 31 set-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND CALC(ANY) record-name 32 record-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND DUPLICATE record-name 5� record-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND record-name WITHIN set-name 33 record-name set-name sort-field-name

USING sort-field -name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

FIND record-name WITHIN set-name CUR- 51 record-name set-name sort-field-name

RENT USING sort-field-name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

OBTAIN (any of the above FIND record

 selection expressions). Call gener-

ated consists of arguments described

above for the FIND in question plus

an additional argument of IDBMSCOM

 (43) function.

 For example:

OBTAIN CALC record 32 record-name IDBMSCOM

 (43)

OBTAIN PRIOR record-name WITHIN set- 12 record-name

 name

KEEP/KEEP EXCLUSIVE (any of the

above FIND/OBTAIN record selection

 expressions). Call generated

consists of arguements described

above for the FIND/OBTAIN in

question plus one of the following

additional IDMSCOM functions:

 KEEP.....IDBMSCOM(87)

 KEEP EXCLUSIVE.....IDBMSCOM(88)

 For example:

OBTAIN KEEP CALC record-name 32 record-name IDBMSCOM IDBMSCOM

 (43) (87)

FIND KEEP EXCLUSIVE CURRENT 3� IDBMSCOM

 (88)

 ──────── ───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

Appendix B. Call Formats B-9

B.2 CA-IDMS/DB call formats

 ──────── ───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

 �5 GET 43

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

 GET record-name 34 record-name

 ──────── ───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

 17 RETURN db-key FROM index-set-name 81 index-set- db-key symbolic-key

CURRENCY KEY INTO symbolic-key name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

RETURN db-key FROM index-set-name 82 index-set- db-key symbolic-key

FIRST KEY INTO symbolic-key name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

RETURN db-key FROM index-set-name 83 index-set- db-key symbolic-key

LAST KEY INTO symbolic-key name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

RETURN db-key FROM index-set-name 84 index-set- db-key symbolic-key

NEXT KEY INTO symbolic-key name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

RETURN db-key FROM index-set-name 85 index-set- db-key symbolic-key

PRIOR KEY INTO symbolic-key name

───────────────────────────────────── ──── ──────────── ───────── ─────────────── ────

RETURN db-key FROM index-set-name 86 index-set- db-key index-key-value symb

USING index-key-value KEY INTO name olic

 symbolic-key -key

 ───

B-10 CA-IDMS DML Reference — PL/I

B.2 CA-IDMS/DB call formats

 B.2.4 ACCEPT statements

 ──

 Calling arguments

 Major Database statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

 15 ACCEPT db-key FROM CURRENCY 54 db-key

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-key FROM record-name 55 record-name db-key

 CURRENCY

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-key FROM set-name 57 set-name db-key

 CURRENCY

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-key FROM area-name 56 area-name db-key

 CURRENCY

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-key FROM set-name NEXT CUR- 68 set-name db-key

 RENCY

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-key FROM set-name PRIOR 69 set-name db-key

 CURRENCY

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-key FROM set-name OWNER 7� set-name db-key

 CURRENCY

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT db-statistics FROM 71 db-statistics

 IDMS-STATISTICS

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ACCEPT bind-address FROM record-name 72 record-name bind-address

 BIND

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

 ACCEPT procedure-control-location 74 procedure-name procedure-

FROM procedure-name PROCEDURE control-location

 ──

 ACCEPT page-info-location 28 record-name page-info-

 FOR record-name location

 ──

Appendix B. Call Formats B-11

B.2 CA-IDMS/DB call formats

B.2.5 LRF DML statements

 ──

 Calling arguments

 Major Database statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

 2� OBTAIN FIRST logical-record-name 99 subschema-lr-ctrl� logical-record-

 location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

OBTAIN FIRST logical-record-name INTO 99 subschema-lr-ctrl� alt-logical-

 alt-logical-record-location record-location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

OBTAIN NEXT logical-record-name 99 subschema-lr-ctrl� logical-record-

 location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

OBTAIN NEXT logical-record-name INTO 99 subschema-lr-ctrl� alt-logical-

 alt-logical-record-location record-location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

 MODIFY logical-record-name 99 subschema-lr-ctrl� logical-record-

 location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

MODIFY logical-record-name FROM alt- 99 subschema-lr-ctrl� alt-logical-

 logical-record-location record-location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

 STORE logical-record-name 99 subschema-lr-ctrl� logical-record-

 location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

STORE logical-record-name FROM alt- 99 subschema-lr-ctrl� alt-logical-

 logical-record-location record-location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

 ERASE logical-record-name 99 subschema-lr-ctrl� logical-record-

 location�

───────────────────────────────────── ──── ────────────────── ──────────────── ───────────── ────

ERASE logical-record-name FROM alt- 99 subschema-lr-ctrl� alt-logical-

 logical-record-location record-location�

 ──

 *To differentiate between the LRF DML statements, the DML precompiler places the
name of the verb issued into the LRC block (subschema-lr-ctrl).

B-12 CA-IDMS DML Reference — PL/I

B.3 CA-IDMS/DC call formats

B.3 CA-IDMS/DC call formats

CA-IDMS/DC passes the DCBMSCOM array as argument 1.

Note: CA-IDMS/DC also passes information in the DCSTR, DCFLG, and DCNUM
fields of the SUBSCHEMA-CTRL block.

Appendix B. Call Formats B-13

B.3 CA-IDMS/DC call formats

B.3.1 Program management statements

 ───

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 3� TRANSFER CONTROL 23 DCFLG1 DCSTR2 parameter

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 3� DC RETURN 19

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 34 LOAD TABLE 15 �1-level-program- end-�1-level-

 location program-

 location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 34 DELETE TABLE 5 �1-level-program-

 location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 33 SET ABEND EXIT (STAE) 2�

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 33 ABEND 1

 ───

B.3.2 Storage management statements

 ───

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 32 GET STORAGE 13 �1-level-storage- end-storage-

 data-location data-location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 32 FREE STORAGE 1� �1-level-storage- start-free-

 data-location storage-location

 ───

B-14 CA-IDMS DML Reference — PL/I

B.3 CA-IDMS/DC call formats

B.3.3 Task management statements

 ───

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 37 ATTACH 3

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 37 CHANGE PRIORITY 4

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 39 ENQUEUE 9 DCFLG1 DCBMSCOM DCBMSCOM resource

 (mode) (length) -id ...

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 39 DEQUEUE 8 DCFLG1 DCBMSCOM resource-id

 (length)

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 31 WAIT 24 ecb

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 31 POST 16 ecb

 ───

B.3.4 Time management statements

 ──

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ────

 35 GET TIME 14 return-time return-date

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ────

 35 SET TIMER 21 start-task-data- end-start-task-

 location data-location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ────

 35 SET TIMER (post) 21 post-ecb

 ──

B.3.5 Scratch management statistics

 ───

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 43 PUT SCRATCH 18 scratch-data- end-scratch-

 location data-location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 43 GET SCRATCH 12 return-scratch-data- end-scratch-

 location data-location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 43 DELETE SCRATCH 7

 ───

Appendix B. Call Formats B-15

B.3 CA-IDMS/DC call formats

B.3.6 Queue management statements

 ───

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 44 PUT QUEUE 17 queue-data-location end-queue-data-

 location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

44 GET QUEUE 11 return-queue-data- end-queue-data-

 location location

 ──────── ────────────────────────────── ──── ──────────────────── ──────────────── ──────────── ─────────

 44 DELETE QUEUE 6

 ───

B-16 CA-IDMS DML Reference — PL/I

B.3 CA-IDMS/DC call formats

B.3.7 Terminal management statements

 ──

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 45 READ TERMINAL 3� input-data-location end-input-data-

 location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 45 WRITE TERMINAL 3� output-data- end-output-data-

 location location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 45 WRITE THEN READ TERMINAL 3� output-data- end-output-data- input-data- end-input-

 location location location data-

 location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 45 CHECK TERMINAL 31 input-data-location end-input-data-

 location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 47 READ LINE FROM TERMINAL 32 input-data-location end-input-data-

 location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 47 WRITE LINE TO TERMINAL 32 output-data- end-output-data-

 location location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 47 END LINE TERMINAL SESSION 32

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 48 WRITE PRINTER 37 message-location end-message-

 location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP IN (IO) 34 MRB-mapname

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP IN (NOIO) 34 MRB-mapname mapped-data- end-mapped-

 location data-location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP IN (paging) (a) 34 MRB-mapname datafield-name sequence- page-

 field-name number

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP IN (paging) (b) 34 MRB-mapname key page-number

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP OUT (IO) 34 MRB-mapname message-text end-message-

 data-location

 or

 DCBMSCOM

 (length)

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP IN (NOIO) 34 MRB-mapname mapped-data- end-mapped-

 location data-location

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP OUT (paging) 34 MRB-mapname message-text end-message- key

 data-location

 or

 DCBMSCOM

 (length)

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MAP OUTIN 34 MRB-mapname message-text end-message-

 data-location

 or

 DCBMSCOM

 (length)

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

Appendix B. Call Formats B-17

B.3 CA-IDMS/DC call formats

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 MODIFY MAP 93 MRB-mapname MRE MRB-FLDLST

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 INQUIRE MAP (a) 92 MRB-mapname MRE

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 INQUIRE MAP (b) 92 MRB-mapname

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 INQUIRE MAP (c) 92 MRB-mapname MRE

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 INQUIRE MAP (d) 92 MRB-mapname MRB-FLDLST

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 STARTPAGE 4� MRB-mapname

 ──────── ────────────────────────────── ──── ─────────────────── ──────────────── ───────────── ──────────

 46 ENDPAGE 41

 ──

 B.3.8 Utility statements

 ──

 Calling arguments

Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 48 ACCEPT 2 return-location

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 4� SNAP 22 DCSTR1 DCSTR1 DCSTR1 title

 (6) (7) (8)

begin-dump- end-dump- DCBMSCOM

 location location (1)

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 49 SEND MESSAGE 38 user-id message-location end-message-

 location

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 38 BIND TRANSACTION STATISTICS 28

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 38 ACCEPT TRANSACTION STATISTICS 28 return-statistics-

 data-location

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 38 END TRANSACTION STATISTICS 28 return-statistics-

 data-location

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 51 KEEP LONGTERM 29 record-name

 set-name

 area-name

 ──────── ────────────────────────────── ───────── ──────────────────── ──────────────── ────────────── ─────────

 36 WRITE LOG 25 text-return-location end-text-return- reply-location end-

 location reply-

 location

 (6) (7)

 parameter- end-

 location parameter

 -location

 ──

B-18 CA-IDMS DML Reference — PL/I

B.3 CA-IDMS/DC call formats

 B.3.9 Recovery statements

 ──

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ────────────── ──────────── ───────── ─────

 5� COMMIT 66

 ──

 5� COMMIT TASK 27

 ──────── ────────────────────────────── ──── ────────────── ──────────── ───────── ─────

 5� FINISH �2

 ──────── ────────────────────────────── ──── ────────────── ──────────── ───────── ─────

 5� FINISH TASK 27

 ──────── ────────────────────────────── ──── ────────────── ──────────── ───────── ─────

 5� ROLLBACK 67

 ──────── ────────────────────────────── ──── ────────────── ──────────── ───────── ─────

 5� ROLLBACK TASK 27

 ──────── ────────────────────────────── ──── ────────────── ──────────── ───────── ─────

 5� WRITE JOURNAL 26 record- end-record-

 location location

 ──

 B.3.10 DC_BATCH statement

 ───

 Calling arguments

 Major Communications statement (1) (2) (3) (4) (5)

 function (in PL/I DML) (nn)

 code

 ──────── ────────────────────────────── ──── ────────────── ──────────── ────────── ─────

 14 BIND_TASK 28 DCSTR2

 ───

Appendix B. Call Formats B-19

B-20 CA-IDMS DML Reference — PL/I

 Appendix C. Keywords

C.1 About this appendix . C-3

Appendix C. Keywords C-1

C-2 CA-IDMS DML Reference — PL/I

C.1 About this appendix

C.1 About this appendix

This appendix contains a list of keywords recognized by the DML precompiler,
including words applicable in the CA-IDMS/DC environment only. All keywords
marked with an asterisk are also reserved words. Reserved words cannot be used for
user-defined element, record, set, procedure, or area names.

Note: The method of parsing used by the IDMSDMLP preprocessor is significantly
different in CA-IDMS release 12.0 and later releases from that used in prior
releases. The current parsing method looks at individual words in the source
code. If it encounters a keyword, it assumes that the keyword should be
expanded and tries to do so. Invalid use of reserved words can thus result in
either coding errors or syntax errors. For example, if you use FIND as a
variable, the parser will try to handle it as the DML verb FIND.

�ABEND INTERNAL �REMARKS

 ABORT INTERVAL REPLACE

�ACCEPT INTO REPLY

 AID INVOKED REPORT

 ALARM IO REQUIRED

 ALL IS REREAD

 ALPHAMERIC JOURNAL RESETKBD

ALWAYS JUSTIFY RESETMDT

 ANY �KEEP RESUME

 AREA KEY RETENTION

 ASSIGN LAST RETURNKEY

 AT LEAVE RETRIEVAL

�ATTACH LEFT RETRY

 ATTRIBUTES LENGTH �RETURN

 BACKPAGE LEVELS REVERSE_VIDEO

 BACKSCAN LINE REVERSED

�BIND LINK REWIND

BLINK �LINKAGE RIGHT

BLUE LIST �ROLLBACK

 BRIGHT LITERALS RUN

 BROWSE �LOAD RUN_UNIT

 BUFFER LOCK �SCHEMA

 BUT LOG SCRATCH

 BY LONG SCREEN

 CALC LONGTERM SCREENSIZE

�CALL LR SECONDS

 CANCEL LSSC_NODN �SECTION

�CHANGE LTERM �SELECT

 CHANGED MANUAL SELECTIVE

�CHECK �MAP �SEND

 CLASS MAP_BINDS SEQUENCE

 CLEAR MAP_CONTROL SEQUENCE-NUMBER

 CODE MAP_CONTROLS SESSION

�COMMIT MAP_RECORDS �SET

 COMP MAPS SHARE

 COMP_3 MAX SHARED

�CONNECT MDT SHORT

 CONTENTS MEMBER SKIP

 CONTINUE MEMBERS SKIP1

 CONTROL MESSAGE SKIP2

Appendix C. Keywords C-3

C.1 About this appendix

 COPIES MODE SKIP3

�COPY MODIFIED SNAP

 CORRECT �MODIFY SOME

 CURRENCY MODULE SPAN

 CURRENT MOVE STANDARD

 CURSOR MRB_FLDLST START

 DARK NAME STARTPAGE

�DATA NATIVE STARTPRT

 SQL

 DATABASE_KEY NEWPAGE STATISTICS

 DATASTREAM NEXT STGID

DATE NLCR �STOP

 DB NO STORAGE

 DB_KEY NOALARM �STORE

 DBNAME NOBACKPAGE SUBSCHEMA_AREANAMES

�DC NOBACKSCAN SUBSCHEMA_BINDS

 DEBUG NOBLINK SUBSCHEMA_CONTROL

�DECLARATIVES NOCOLOR SUBSCHEMA_CTRL

�DELETE NODEADLOCK SUBSCHEMA_DESCRIPTION

�DEQUEUE NODENAME SUBSCHEMA_DML-LR-

DEST NODUMP DESCRIPTION

 DESTINATION NOIO SUBSCHEMA_LR-CONTROL

 DETAIL NOKBD SUBSCHEMA_LR-CTRL

 DETECT NOLOCK SUBSCHEMA_LR-

 DFLD NOMDT DESCRIPTION

�DISCONNECT NONE SUBSCHEMA_LR-NAMES

DISP NOPAD SUBSCHEMA_LR-RECORDS

 DISPLAY NOPRT SUBSCHEMA_NAMES

 DIVISION NORETURN SUBSCHEMA_RECNAMES

 SUBSCHEMA_RECORD_BINDS

 DUMP NORMAL SUBSCHEMA_RECORDS

 DUPLICATE NORMAL_VIDEO SUBSCHEMA-SETNAMES

 EAU NOSPAN SUBSCHEMA_SSNAME

 ECHO NOT SYSTEM

 EDIT �NOTE SYSVERSION

 EJECT NOTIFICATION TABLE

EMPTY NOTIFY TASK

�END NOUNDERSCORE TEMPORARY

 ENDPAGE NOWAIT TERMINAL

ENDRPT NOWRITE TEST

�ENQUEUE NULL TEXT

�ENTRY NUMERIC THEN

�ENVIRONMENT �OBTAIN TIME

�ERASE OF TIMEOUT

 ERROR OFF TIMER

 EVENT ON TITLE

 EXCEPT ONLY TO

 EXCLUSIVE �OPEN TRACE

 EXIT OPTIONAL TRANSACTION

 EXITS OUT �TRANSFER

 EXTENDED OUTIN TRUNCATED

 EXTERNAL OUTPUT TURQUOISE

 EXTRANEOUS OWNER TYPE

 FIELD PAD UNDERSCORE

 FIELDS PAGE UNFORMATTED

 FILE PAGE_INFO UNPROTECTED

�FIND PAGING UPDATE

�FINISH PARMS UPGRADE

 FIRST PERMANENT USAGE_MODE

C-4 CA-IDMS DML Reference — PL/I

C.1 About this appendix

FOR PINK USER

�FREE POSITION USING

 FROM �POST VALUE

�GET PREFIX VERSION

 GREEN PRINTER �WAIT

 HEADER PRIOR WCC

 HOLD PRIORITY WHERE

 I_O PRIVACY WHITE

�ID �PROCEDURE WITH

�IDENTIFICATION PROGRAM WITHIN

 IDMS �PROGRAM_ID �WORKING_STORAGE

�IDMS_CONTROL PROTECTED �WRITE

 IDMS_RECORDS PROTOCOL XCTL

 IDMS_STATISTICS PTERM YELLOW

�IF �PUT YES

 IGNORED QUEUE 4�CR

IN �READ 64CR

 INCREMENTED �READY 8�CR

 INPUT RECORD

�INQUIRE RED

 INTENT REDISPATCH

 RELEASE

Appendix C. Keywords C-5

C-6 CA-IDMS DML Reference — PL/I

Appendix D. Notes to Teleprocessing Monitor Users

D.1 About this appendix . D-3

Appendix D. Notes to Teleprocessing Monitor Users D-1

D-2 CA-IDMS DML Reference — PL/I

D.1 About this appendix

D.1 About this appendix

This appendix describes special considerations relating to application programs running
under teleprocessing (TP) monitors supported by DC/UCF systems (that is, CICS,
INTERCOMM, SHADOW, and TASK/MASTER).

While there are no special coding requirements for TP-monitor transactions, the
following guidelines should be adhered to:

■ DML statements should be coded so that all database requests (for example,
BIND, READY, OBTAIN, FINISH) are executed together whenever possible to
achieve maximum efficiency and ease of recovery.

■ For each TP monitor, you should check with the DBA to determine the operating
mode (protocol) installed. The proper mode must then be specified in the MODE
clause of the DECLARE SUBSCHEMA statement.

■ The DML precompiler should be executed before the TP-monitor precompiler.

■ For CICS, INTERCOMM, and SHADOW applications, the mode, as installed,
may require the inclusion of additional statements in each program. These
requirements and the applicable modes are outlined in the following table.

Note: The same rules apply to the INCLUDE IDMS statements used to insert
logical-record source code components into the program:
SUBSCHEMA_CTRL, SUBSCHEMA_LR_CTRL, and
SUBSCHEMA_LR_RECORDS should be copied into the program (except
under CICS_EXEC, components should be copied into the program).

TP monitor If mode is... Code these statements

CICS CICS_STANDARD �DECLARE

 1 TWA BASED (TPTR),

 3 FILLER,

3 INCLUDE IDMS(SUBSCHEMA_CTRL),

 3 INCLUDE

 IDMS(SUBSCHEMA_RECORDS),

 ADDRESS TWA(TPTR);

 or

 ��INCLUDE IDMS(SUBSCHEMA_CTRL);

 INCLUDE IDMS(SUBSCHEMA_RECORDS);

(A CICS GETMAIN must be issued for

the SUBSCHEMA_CTRL and for

each RECORD being copied.)

 INCLUDE IDMS(IDMS_WAIT);

CICS CICS_EXEC INCLUDE IDMS(SUBSCHEMA_CTRL);

INCLUDE IDMS(SUBSCHEMA_RECORDS);

INTERCOMM INTERCOMM INCLUDE IDMS(SUBSCHEMA_CTRL);

INCLUDE IDMS(SUBSCHEMA_RECORDS);

Appendix D. Notes to Teleprocessing Monitor Users D-3

D.1 About this appendix

TP monitor If mode is... Code these statements

SHADOW SHADOW INCLUDE IDMS(SUBSCHEMA_CTRL);

INCLUDE IDMS(SUBSCHEMA_RECORDS);

 * If SUBSCHEMA_CTRL, SUBSCHEMA_RECORDS, and additional data does not
exceed 4,096 bytes

** If SUBSCHEMA_CTRL, SUBSCHEMA_RECORDS, and additional data exceeds
4,096 bytes

D-4 CA-IDMS DML Reference — PL/I

Appendix E. Sample Programs and Database
Definition

E.1 About this appendix . E-3
E.2 CA-IDMS/DC programming considerations E-4
E.3 Sample batch program . E-6

E.3.1 Batch input to the DML precompiler E-7
E.3.2 Output from the DML precompiler E-10
E.3.3 Output from the PL/I compiler . E-13

E.4 Sample online program . E-18
E.4.1 Application components . E-18
E.4.2 Application runtime requirements . E-19
E.4.3 Online input to the DML precompiler E-21
E.4.4 Output from the DML precompiler E-23
E.4.5 Output from the PL/I compiler . E-25

E.5 EMPLOYEE database definition . E-31

Appendix E. Sample Programs and Database Definition E-1

E-2 CA-IDMS DML Reference — PL/I

E.1 About this appendix

E.1 About this appendix

This appendix contains:

■ CA-IDMS/DC programming considerations

■ A sample PL/I batch program

■ A sample PL/I online program

■ A sample database definition - The EMPLOYEE database

The sample programs access the EMPLOYEE database. The database is shown in a
diagram at the end of this appendix.

Appendix E. Sample Programs and Database Definition E-3

E.2 CA-IDMS/DC programming considerations

E.2 CA-IDMS/DC programming considerations

These programming considerations consist of PL/I-specific details relevant to designing
CA-IDMS/DC programs:

■ Reentrant code is program code that does not modify itself during program
execution. CA-IDMS/DC multithreads all task requests through a single copy of a
reentrant program. The CA-IDMS/DC default for PL/I programs is reentrant. To
ensure that your program is reentrant, it must be compiled with the REENTRANT
option of the PROCEDURE statement. Some PL/I compilers do not support
reentrancy. If your compiler does not support reentrancy, your programs must be
declared to CA-IDMS/DC as NONREENTRANT.

■ Use the COUNT and REPORT execution options to capture statistics in the
CA-IDMS/DC log. You can use these statistics to optimize storage requirements
and to analyze program performance.

■ Avoid using GET STORAGE repeatedly for relatively small areas when most
tasks in the system are accessing larger areas. It may be more advantageous to
declare PL/I variables explicitly and allow CA-IDMS/DC and PL/I to manage the
storage. Internal management of storage for PL/I declared variables is handled in
the same way under IDMS/DC as it is in the batch environment, with one
exception. When PL/I code would normally issue an operating system request for
storage, CA-IDMS/DC satisfies the request from the storage pool. Once a block
of storage is allocated, it is managed as described in the PL/I programmer's guide
for your installation.

■ Use the REPORT execution option to determine the amount of storage actually
used during program execution. Use the report statistics to set the ISA SIZE for
the program in the CA-IDMS/DC system generation.

■ The PL/I COUNT and FLOW options can be used to gather the following
statistics:

– The number of times each procedure is called

– The amount of storage used during PL/I program execution.

To use these options, refer to the PL/I programmer's guide for your installation.
The following considerations apply to the use of these options under
CA-IDMS/DC:

– The statistics are written to the CA-IDMS/DC system log rather than to an
external file. The statistics record type is MESSAGES.

– The statistics are not written to the log if the program terminates execution
with an IDMS_DC RETURN statement. The program must use the PL/I
RETURN statement. After statistics are written to the log, CA-IDMS/DC
passes control to the next higher program in the transaction thread, as if an
CA-IDMS/DC RETURN had been coded.

– The REPORT and COUNT options should not be used together, since the
COUNT option adds storage overhead. Accordingly, report statistics would
not be accurate.

E-4 CA-IDMS DML Reference — PL/I

E.2 CA-IDMS/DC programming considerations

– The REPORT and COUNT options are not intended to be used in a
production environment. Their use adds considerable storage and CPU
overhead under CA-IDMS/DC, just as it would in a batch environment. Once
the statistics have been gathered, these options should be removed from the
program.

Appendix E. Sample Programs and Database Definition E-5

E.3 Sample batch program

E.3 Sample batch program

The following PL/I batch program accesses database records using navigational DML
statements. The following figure shows the program as it appears in the various stages
of the compilation process. You create a program using PL/I and DML statements.
This program is input to the DML precompiler, which produces a listing that contains
diagnostics and, optionally, DML source statements. The expanded code is input to
the PL/I compiler, which generates a listing of the fully expanded code and
diagnostics.

E-6 CA-IDMS DML Reference — PL/I

E.3 Sample batch program

E.3.1 Batch input to the DML precompiler

The following is sample batch input to the DML precompiler for PL/I.

//SYSIPT DD �

 /�RETRIEVAL�/

 /�DMLIST�/

 /�NO_ACTIVITY_LOG�/

 /�SCHEMA_COMMENTS�/

DEPTRPT: PROC OPTIONS (MAIN) REORDER;

/� DECLARE SUBSCHEMA AND MODE �/

DCL (EMPSS�1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 1��)

MODE (BATCH) DEBUG;

/� REQUIRED DECLARATIVES �/

DCL IDMS ENTRY OPTIONS(INTER,ASM);

DCL ABORT ENTRY OPTIONS(INTER,ASM);

 DCL ADDR BUILTIN;

/� CONSTANTS �/

DCL DEPT_HEADER CHAR (11) INIT ('DEPT REPORT');

 DCL 1 HEAD_LINE,

5 HEAD_DEPT_ID CHAR (9) INIT ('DEPT ID '),

5 HEAD_EMP_ID CHAR (8) INIT ('EMP ID '),

5 HEAD_LNAME CHAR (17) INIT ('LAST NAME '),

5 HEAD_FNAME CHAR (1�) INIT ('FIRST NAME');

DCL PRTHEAD CHAR (44) DEFINED HEAD_LINE;

/� LOGICAL CONSTANTS �/

 DCL YES BIT(1) INIT ('1'B);

 DCL NO BIT(1) INIT ('�'B);

 DCL EOF BIT(1) INIT ('�'B);

 DCL 1 PROGRAM_FLAGS,

 5 DB_END_OF_SET BIT(1) INIT ('�'B);

/� FILE DECLARATIONS �/

DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(8�));

DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);

DCL SYSPRINT FILE PRINT;

/� THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. �/

/� THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS �/

 /� TO UNDERSCORES. �/

INCLUDE IDMS (DEPT-IN-REC);

INCLUDE IDMS (PRT-OUT-REC);

/� REDEFINE PRT_OUT_REC �/

DCL PRTREC CHAR (44) DEFINED PRT_OUT_REC;

 DCL 1 PRINT_AREA,

 5 CC CHAR (1),

 5 PRINT_LINE CHAR (132);

DCL 1 SPACES CHAR (132) INIT ((132) ' ');

/� POSSIBLE VALUES FOR CC �/

 DCL 1 CONTROL_CHARACTERS,

Appendix E. Sample Programs and Database Definition E-7

E.3 Sample batch program

5 NEW_PAGE CHAR (1) INIT ('1'),

5 SINGLE_SPACE CHAR (1) INIT (' '),

5 DOUBLE_SPACE CHAR (1) INIT ('�'),

5 TRIPLE_SPACE CHAR (1) INIT ('-'),

5 OVERPRINT CHAR (1) INIT ('+');

INCLUDE IDMS (SUBSCHEMA_CTRL);

INCLUDE IDMS (DEPARTMENT);

INCLUDE IDMS (EMPLOYEE);

 /���/

 /� PROCESSING FOLLOWS �/

/� OPEN THE FILES �/

/� INFILE ── INPUT �/

/� OUTFILE ── OUTPUT �/

/� SYSPRINT ── USED BY IDMS_STATUS �/

OPEN FILE (INFILE);

OPEN FILE (OUTFILE);

OPEN FILE (SYSPRINT);

ON ENDFILE (INFILE) EOF = YES;

/� BIND RUN UNIT AND RECORDS EXPLICITLY �/

 BIND RUN_UNIT

 NODENAME ('')

 DBNAME ('');

 CALL IDMS_STATUS;

BIND RECORD (EMPLOYEE);

 CALL IDMS_STATUS;

BIND RECORD (DEPARTMENT);

 CALL IDMS_STATUS;

 READY;

 CALL IDMS_STATUS;

READ FILE (INFILE) INTO (DEPT_IN_REC);

DO WHILE (EOF);

DB_END_OF_SET = NO;

DEPT_ID_�41� = DEPT_ID_IN;

OBTAIN CALC RECORD (DEPARTMENT);

/� �326 MEANS �/

/� DEPT NOT FOUND �/

IF ERROR_STATUS = '�326' THEN CALL NO_DEPT;

 ELSE

 DO;

IF SET (DEPT_EMPLOYEE) EMPTY THEN CALL NO_EMP;

 ELSE

 CALL NEW_DEPT;

DO UNTIL (DB_END_OF_SET);

OBTAIN NEXT RECORD (EMPLOYEE)

 SET (DEPT_EMPLOYEE);

IF ERROR_STATUS = '�3�7' THEN

DB_END_OF_SET = YES;

 ELSE

 CALL IDMS_STATUS;

 IF DB_END_OF_SET THEN

 DO;

/� MOVE FIELDS TO �/

/� OUTPUT RECORD �/

 DEPT_ID_OUT = DEPT_ID_�41�;

E-8 CA-IDMS DML Reference — PL/I

E.3 Sample batch program

 EMP_ID_OUT = EMP_ID_�415;

EMP_LNAME_OUT = EMP_LAST_NAME_�415;

EMP_FNAME_OUT = EMP_FIRST_NAME_�415;

 CC = DOUBLE_SPACE;

 PRINT_LINE = SPACES;

 PRINT_LINE = PRTREC;

 CALL PRINT_A_LINE;

END; /� END PRINTING DO �/

END; /� END DO UNTIL �/

END; /� END �326 ELSE DO �/

READ FILE (INFILE) INTO (DEPT_IN_REC);

END; /� END DO WHILE EOF �/

 CALL END_PROCESSING;

 NEW_DEPT: PROC;

PRINT_LINE = SPACES; /� NEW PAGE FOR EACH �/

CC = NEW_PAGE; /� DEPARTMENT �/

PRINT_LINE = DEPT_HEADER;

 CALL PRINT_A_LINE;

PRINT_LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT_LINE = DEPT_ID_�41�;

 CALL PRINT_A_LINE;

PRINT_LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT_LINE = PRTHEAD;

 CALL PRINT_A_LINE;

 END NEW_DEPT;

 NO_DEPT: PROC;

PRINT_LINE = SPACES;

CC = NEW_PAGE;

PRINT_LINE = DEPT_ID_IN;

 CALL PRINT_A_LINE;

PRINT_LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT_LINE = '�� DEPARTMENT SPECIFIED ABOVE NOT FOUND ��';

 CALL PRINT_A_LINE;

 END NO_DEPT;

 NO_EMP: PROC;

PRINT_LINE = SPACES;

CC = NEW_PAGE;

PRINT_LINE = DEPT_ID_IN;

 CALL PRINT_A_LINE;

PRINT_LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT_LINE = DEPT_ID_�41�;

 CALL PRINT_A_LINE;

PRINT_LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT_LINE = '�� DEPARTMENT SPECIFIED IS EMPTY ���';

 CALL PRINT_A_LINE;

 END NO_EMP;

Appendix E. Sample Programs and Database Definition E-9

E.3 Sample batch program

 END_PROCESSING: PROC;

 FINISH;

CLOSE FILE (INFILE);

CLOSE FILE (OUTFILE);

CLOSE FILE (SYSPRINT);

 END END_PROCESSING;

 PRINT_A_LINE: PROC;

WRITE FILE (OUTFILE) FROM (PRINT_AREA);

 END PRINT_A_LINE;

INCLUDE IDMS (IDMS_STATUS);

 END DEPTRPT;

E.3.2 Output from the DML precompiler

The following shows the sample program as output from the DML precompiler.

Since the /*DMLIST*/ option is specified, printed output consists of expanded code as
well as diagnostics. This output is in the following format:

■ Heading — The top of each page of the listing contains the name of the DML
precompiler being used (IDMSDMLP), the release number of the processor, the
name of the listing (Listing of Messages), the date, the time, and the page number.

■ Input listing and DML precompiler-generated code — The body of the printout
contains the program input listing along with the DML precompiler-generated
code, formatted as follows:

■ Warning and Error Messages — Diagnostics are imbedded in the input listing
and DML precompiler-generated code following the errant lines of source code.
For a complete description of DML precompiler error messages, refer to CA-IDMS
Messages and Codes.

IDMSDMLP 15.� COMPUTER ASSOCIATES INTERNATIONAL, INC. DML PROCESSOR FOR PL/I DATE TIME PAGE

- - LISTING OF MESSAGES - - �9/27/99 134452�5 ���1

 ����1 /�RETRIEVAL�/

 ����2 /�DMLIST�/

 ����3 /�NO_ACTIVITY_LOG�/

 ����4 /�SCHEMA_COMMENTS�/

����5 DEPTRPT: PROC OPTIONS (MAIN) REORDER;

����6 /� DECLARE SUBSCHEMA AND MODE �/

DMLP ����8 DCL (EMPSS�1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 1��)

����9 MODE (BATCH) DEBUG;

 ���1�

���11 /� REQUIRED DECLARATIVES �/

���12 DCL IDMS ENTRY OPTIONS(INTER,ASM);

���13 DCL ABORT ENTRY OPTIONS(INTER,ASM);

Column Explanation

1 Sequence numbers generated by the DML precompiler

12 Line numbers generated by the DML precompiler

19 Line numbers generated by the user program

26 Text of the PL/I source code including text generated by the DML
precompiler

E-10 CA-IDMS DML Reference — PL/I

E.3 Sample batch program

 ���14 DCL ADDR BUILTIN;

 ���15

 ���16 /� CONSTANTS �/

���17 DCL DEPT_HEADER CHAR (11) INIT ('DEPT REPORT');

 ���18 DCL 1 HEAD_LINE,

���19 5 HEAD_DEPT_ID CHAR (9) INIT ('DEPT ID '),

���2� 5 HEAD_EMP_ID CHAR (8) INIT ('EMP ID '),

���21 5 HEAD_LNAME CHAR (17) INIT ('LAST NAME '),

���22 5 HEAD_FNAME CHAR (1�) INIT ('FIRST NAME');

 ���23

���24 DCL PRTHEAD CHAR (44) DEFINED HEAD_LINE;

 ���25

 ���26 /� LOGICAL CONSTANTS �/

 ���27 DCL YES BIT(1) INIT ('1'B);

 ���28 DCL NO BIT(1) INIT ('�'B);

 ���29 DCL EOF BIT(1) INIT ('�'B);

 ���3�

 ���31 DCL 1 PROGRAM_FLAGS,

 ���32 5 DB_END_OF_SET BIT(1) INIT ('�'B);

 ���33

���34 /� FILE DECLARATIONS �/

���35 DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(8�));

���36 DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);

���37 DCL SYSPRINT FILE PRINT;

 ���38

���39 /� THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. �/

���4� /� THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS �/

 ���41 /� TO UNDERSCORES. �/

 ���42

DMLP ���44 INCLUDE IDMS (DEPT-IN-REC);

DMLP ���49 INCLUDE IDMS (PRT-OUT-REC);

 ���58

���59 /� REDEFINE PRT_OUT_REC �/

���6� DCL PRTREC CHAR (44) DEFINED PRT_OUT_REC;

 ���61

 ���62 DCL 1 PRINT_AREA,

 ���63 5 CC CHAR (1),

 ���64 5 PRINT_LINE CHAR (132);

 ���65

���66 DCL 1 SPACES CHAR (132) INIT ((132) ' ');

 ���67

���68 /� POSSIBLE VALUES FOR CC �/

 ���69 DCL 1 CONTROL_CHARACTERS,

���7� 5 NEW_PAGE CHAR (1) INIT ('1'),

���71 5 SINGLE_SPACE CHAR (1) INIT (' '),

���72 5 DOUBLE_SPACE CHAR (1) INIT ('�'),

���73 5 TRIPLE_SPACE CHAR (1) INIT ('-'),

���74 5 OVERPRINT CHAR (1) INIT ('+');

 ���75

DMLP ���77 INCLUDE IDMS (SUBSCHEMA_CTRL);

DMLP ��1�3 INCLUDE IDMS (DEPARTMENT);

DMLP ��11� INCLUDE IDMS (EMPLOYEE);

 ��14�

 ��141 /���/

 ��142 /� PROCESSING FOLLOWS �/

��143 /� OPEN THE FILES �/

��144 /� INFILE ── INPUT �/

��145 /� OUTFILE ── OUTPUT �/

��146 /� SYSPRINT ── USED BY IDMS_STATUS �/

��147 OPEN FILE (INFILE);

��148 OPEN FILE (OUTFILE);

��149 OPEN FILE (SYSPRINT);

��15� ON ENDFILE (INFILE) EOF = YES;

 ��151

��152 /� BIND RUN UNIT AND RECORDS EXPLICITLY �/

DMLP���1 ��154 BIND RUN_UNIT

 ��155 NODENAME ('')

 ��156 DBNAME ('');

 ��167

 ��168 CALL IDMS_STATUS;

DMLP���2 ��17� BIND RECORD (EMPLOYEE);

 ��179 CALL IDMS_STATUS;

DMLP���3 ��181 BIND RECORD (DEPARTMENT);

 ��19� CALL IDMS_STATUS;

DMLP���4 ��192 READY;

 ��199 CALL IDMS_STATUS;

��2�� READ FILE (INFILE) INTO (DEPT_IN_REC);

 ��2�1

��2�2 DO WHILE (EOF);

 ��2�3

��2�4 DB_END_OF_SET = NO;

��2�5 DEPT_ID_�41� = DEPT_ID_IN;

DMLP���5 ��2�7 OBTAIN CALC RECORD (DEPARTMENT);

��216 /� �326 MEANS �/

��217 /� DEPT NOT FOUND �/

��218 IF ERROR_STATUS = '�326' THEN CALL NO_DEPT;

 ��219 ELSE

 ��22� DO;

DMLP���6 ��222 IF SET (DEPT_EMPLOYEE) EMPTY

��231 THEN CALL NO_EMP;

 ��232 ELSE

 ��233 CALL NEW_DEPT;

��234 DO UNTIL (DB_END_OF_SET);

DMLP���7 ��236 OBTAIN NEXT RECORD (EMPLOYEE)

 ��237 SET (DEPT_EMPLOYEE);

��247 IF ERROR_STATUS = '�3�7' THEN

��248 DB_END_OF_SET = YES;

 ��249 ELSE

 ��25� CALL IDMS_STATUS;

 ��251 IF DB_END_OF_SET THEN

 ��252 DO;

��253 /� MOVE FIELDS TO �/

��254 /� OUTPUT RECORD �/

 ��255 DEPT_ID_OUT = DEPT_ID_�41�;

 ��256 EMP_ID_OUT = EMP_ID_�415;

��257 EMP_LNAME_OUT = EMP_LAST_NAME_�415;

Appendix E. Sample Programs and Database Definition E-11

E.3 Sample batch program

��258 EMP_FNAME_OUT = EMP_FIRST_NAME_�415;

 ��259 CC = DOUBLE_SPACE;

 ��26� PRINT_LINE = SPACES;

 ��261 PRINT_LINE = PRTREC;

 ��262 CALL PRINT_A_LINE;

��263 END; /� END PRINTING DO �/

��264 END; /� END DO UNTIL �/

��265 END; /� END �326 ELSE DO �/

 ��266

��267 READ FILE (INFILE) INTO (DEPT_IN_REC);

��268 END; /� END DO WHILE EOF �/

 ��269 CALL END_PROCESSING;

 ��27�

 ��271 NEW_DEPT: PROC;

��272 PRINT_LINE = SPACES; /� NEW PAGE FOR EACH �/

��273 CC = NEW_PAGE; /� DEPARTMENT �/

��274 PRINT_LINE = DEPT_HEADER;

 ��275 CALL PRINT_A_LINE;

 ��276

��277 PRINT_LINE = SPACES;

��278 CC = DOUBLE_SPACE;

��279 PRINT_LINE = DEPT_ID_�41�;

 ��28� CALL PRINT_A_LINE;

 ��281

��282 PRINT_LINE = SPACES;

��283 CC = DOUBLE_SPACE;

��284 PRINT_LINE = PRTHEAD;

 ��285 CALL PRINT_A_LINE;

 ��286

 ��287 END NEW_DEPT;

 ��288

 ��289 NO_DEPT: PROC;

��29� PRINT_LINE = SPACES;

��291 CC = NEW_PAGE;

��292 PRINT_LINE = DEPT_ID_IN;

 ��293 CALL PRINT_A_LINE;

��294 PRINT_LINE = SPACES;

��295 CC = DOUBLE_SPACE;

��296 PRINT_LINE = '�� DEPARTMENT SPECIFIED ABOVE NOT FOUND ��';

 ��297 CALL PRINT_A_LINE;

 ��298 END NO_DEPT;

 ��299

 ��3�� NO_EMP: PROC;

��3�1 PRINT_LINE = SPACES;

��3�2 CC = NEW_PAGE;

��3�3 PRINT_LINE = DEPT_ID_IN;

 ��3�4 CALL PRINT_A_LINE;

 ��3�5

��3�6 PRINT_LINE = SPACES;

��3�7 CC = DOUBLE_SPACE;

��3�8 PRINT_LINE = DEPT_ID_�41�;

 ��3�9 CALL PRINT_A_LINE;

 ��31�

��311 PRINT_LINE = SPACES;

��312 CC = DOUBLE_SPACE;

��313 PRINT_LINE = '�� DEPARTMENT SPECIFIED IS EMPTY ���';

 ��314 CALL PRINT_A_LINE;

 ��315 END NO_EMP;

 ��316

 ��317 END_PROCESSING: PROC;

DMLP���8 ��319 FINISH;

��326 CLOSE FILE (INFILE);

��327 CLOSE FILE (OUTFILE);

��328 CLOSE FILE (SYSPRINT);

 ��329 END END_PROCESSING;

 ��33�

 ��331 PRINT_A_LINE: PROC;

��332 WRITE FILE (OUTFILE) FROM (PRINT_AREA);

 ��333 END PRINT_A_LINE;

 ��334

 ��335

DMLP ��337 INCLUDE IDMS (IDMS_STATUS);

 ��338 IDMS_STATUS: PROC;

��339 /� THE IDMS_STATUS PROCEDURE IS CALLED BY THE USER AFTER �/

��34� /� EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN �/

��341 /� MADE FOR ANY EXPECTED NON-ZERO ERROR_STATUS CONDITIONS. �/

��342 /� IT DETECTS A NON-ZERO ERROR_STATUS AND ABNORMALLY �/

��343 /� TERMINATES THE PROGRAM ACCORDINGLY. �/

��344 IF ERROR_STATUS='����' THEN GOTO END_STATUS;

��345 PUT SKIP EDIT ('PROGRAM NAME ──────', PROGRAM,

��346 'ERROR STATUS ──────', ERROR_STATUS,

��347 'ERROR RECORD ──────', ERROR_RECORD,

��348 'ERROR SET ─────────', ERROR_SET,

��349 'ERROR AREA ────────', ERROR_AREA,

��35� 'LAST GOOD RECORD ──', RECORD_NAME,

��351 'LAST GOOD AREA ────', AREA_NAME,

��352 'DML SEQUENCE ──────', DML_SEQUENCE)

 ��353 (A(19),X(5),A(8),SKIP,A(19),X(5),A(4),5(SKIP,

 ��354 A(19),X(5),A(16)),SKIP,A(19),X(5),F(1�));

DMLP���9 ��356 ROLLBACK;

 ��363 CALL ABORT;

 ��364 END_STATUS: END;

 ��365

 ��366 END DEPTRPT;

E-12 CA-IDMS DML Reference — PL/I

E.3 Sample batch program

E.3.3 Output from the PL/I compiler

The following shows the sample batch program after processing by the PL/I compiler.
The original code is further expanded and includes the following:

■ Line numbers generated by the PL/I compiler

■ CA-IDMS call statements for the requested DML functions

 ■ Diagnostic messages

For details on the expanded code generated by the DML precompiler, see Appendix B,
“Call Formats” on page B-1.
PL/I OPTIMIZING COMPILER /�RETRIEVAL�/ PAGE 2

 SOURCE LISTING

STMT LEV NT

 /�RETRIEVAL�/

 /�DMLIST�/

 /�NO_ACTIVITY_LOG�/

 /�SCHEMA_COMMENTS�/

1 � DEPTRPT: PROC OPTIONS (MAIN) REORDER;

/� DECLARE SUBSCHEMA AND MODE �/

 /�

DCL (EMPSS�1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 1��)

MODE (BATCH) DEBUG;

 �/

/� REQUIRED DECLARATIVES �/

2 1 � DCL IDMS ENTRY OPTIONS(INTER,ASM);

3 1 � DCL ABORT ENTRY OPTIONS(INTER,ASM);

 4 1 � DCL ADDR BUILTIN;

/� CONSTANTS �/

5 1 � DCL DEPT_HEADER CHAR (11) INIT ('DEPT REPORT');

 6 1 � DCL 1 HEAD_LINE,

5 HEAD_DEPT_ID CHAR (9) INIT ('DEPT ID '),

5 HEAD_EMP_ID CHAR (8) INIT ('EMP ID '),

5 HEAD_LNAME CHAR (17) INIT ('LAST NAME '),

5 HEAD_FNAME CHAR (1�) INIT ('FIRST NAME');

7 1 � DCL PRTHEAD CHAR (44) DEFINED HEAD_LINE;

/� LOGICAL CONSTANTS �/

 8 1 � DCL YES BIT(1) INIT ('1'B);

 9 1 � DCL NO BIT(1) INIT ('�'B);

 1� 1 � DCL EOF BIT(1) INIT ('�'B);

11 1 � DCL 1 PROGRAM_FLAGS,

 5 DB_END_OF_SET BIT(1) INIT ('�'B);

/� FILE DECLARATIONS �/

12 1 � DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(8�));

13 1 � DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);

14 1 � DCL SYSPRINT FILE PRINT;

/� THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. �/

/� THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS �/

 /� TO UNDERSCORES. �/

 /�

INCLUDE IDMS (DEPT-IN-REC);

15 1 � DECLARE 1 DEPT_IN_REC,

2 DEPT_ID_IN PICTURE '(4)9',

2 DEPT_FILLER CHARACTER (76);

 /�

INCLUDE IDMS (PRT-OUT-REC);

 �/

16 1 � DECLARE 1 PRT_OUT_REC,

2 DEPT_ID_OUT CHARACTER (4),

2 PRT_FILL_5 CHARACTER (5) INITIAL (' '),

2 EMP_ID_OUT CHARACTER (4),

2 PRT_FILL_4 CHARACTER (4) INITIAL (' '),

2 EMP_LNAME_OUT CHARACTER (15),

2 PRT_FILL_2 CHARACTER (2) INITIAL (' '),

2 EMP_FNAME_OUT CHARACTER (1�);

/� REDEFINE PRT_OUT_REC �/

17 1 � DCL PRTREC CHAR (44) DEFINED PRT_OUT_REC;

 18 1 � DCL 1 PRINT_AREA,

 5 CC CHAR (1),

 5 PRINT_LINE CHAR (132);

19 1 � DCL 1 SPACES CHAR (132) INIT ((132) ' ');

/� POSSIBLE VALUES FOR CC �/

 2� 1 � DCL 1 CONTROL_CHARACTERS,

5 NEW_PAGE CHAR (1) INIT ('1'),

5 SINGLE_SPACE CHAR (1) INIT (' '),

5 DOUBLE_SPACE CHAR (1) INIT ('�'),

5 TRIPLE_SPACE CHAR (1) INIT ('-'),

5 OVERPRINT CHAR (1) INIT ('+');

 /�

Appendix E. Sample Programs and Database Definition E-13

E.3 Sample batch program

INCLUDE IDMS (SUBSCHEMA_CTRL);

 �

 21 DECLARE 1 SUBSCHEMA_CTRL,

3 PROGRAM CHARACTER (8) INITIAL (' ') ,

3 ERROR_STATUS CHARACTER (4) INITIAL ('14��') ,

3 DBKEY FIXED BINARY (31),

3 RECORD_NAME CHARACTER (16) INITIAL (' ') ,

3 AREA_NAME CHARACTER (16) INITIAL (' ') ,

3 ERROR_SET CHARACTER (16) INITIAL (' ') ,

3 ERROR_RECORD CHARACTER (16) INITIAL (' ') ,

3 ERROR_AREA CHARACTER (16) INITIAL (' ') ,

3 IDBMSCOM_AREA CHARACTER (1��) INITIAL (LOW(1��)) ,

3 DIRECT_DBKEY FIXED BINARY (31),

 3 DATABASE_STATUS,

5 DBSTATMENT_CODE CHARACTER (2),

5 DBSTATUS_CODE CHARACTER (5),

3 FILLER���1 CHARACTER (1),

3 RECORD_OCCUR FIXED BINARY (31),

3 DML_SEQUENCE FIXED BINARY (31);

 22 DECLARE 1 RIDBMSCOM BASED(ADDR(SUBSCHEMA_CTRL.IDBMSCOM_AREA)),

 3 PAGE_INFO,

5 PAGE_INFO_GROUP FIXED BINARY (15),

5 PAGE_INFO_DBK_FORMAT FIXED BINARY (15),

3 FILLER���2 CHARACTER (96);

23 DECLARE 1 IDBMSCOM (1��) BASED(ADDR(SUBSCHEMA_CTRL.IDBMSCOM_AREA))

 CHARACTER (1);

 24 DECLARE 1 AREA_RNAME BASED(ADDR(SUBSCHEMA_CTRL.AREA_NAME)),

3 SSC_DNO CHARACTER (8),

3 SSC_DNA CHARACTER (8);

 25 DECLARE 1 RRECORD_NAME BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME)),

3 SSC_NODN CHARACTER (8),

3 SSC_DBN CHARACTER (8);

26 1 � DECLARE 1 SUBSCHEMA_CTRL,

3 PROGRAM CHARACTER (8) INITIAL (' '),

3 ERROR_STATUS CHARACTER (4) INITIAL ('14��'),

3 DBKEY FIXED BINARY (31),

3 RECORD_NAME CHARACTER (16) INITIAL (' '),

3 AREA_NAME CHARACTER (16) INITIAL (' '),

3 ERROR_SET CHARACTER (16) INITIAL (' '),

3 ERROR_RECORD CHARACTER (16) INITIAL (' '),

3 ERROR_AREA CHARACTER (16) INITIAL (' '),

 3 IDBMSCOM_AREA,

5 IDBMSCOM (1��) CHARACTER (1),

3 DIRECT_DBKEY FIXED BINARY (31),

 3 DATABASE_STATUS,

5 DBSTATMENT_CODE CHARACTER (2),

5 DBSTATUS_CODE CHARACTER (5),

3 FILLER���1 CHARACTER (1),

3 RECORD_OCCUR FIXED BINARY (31),

3 DML_SEQUENCE FIXED BINARY (31);

27 1 � DECLARE 1 AREA_RNAME BASED(ADDR(SUBSCHEMA_CTRL.AREA_NAME)),

3 SSC_DNO CHARACTER (8),

3 SSC_DNA CHARACTER (8);

28 1 � DECLARE 1 RRECORD_NAME BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME)),

3 SSC_NODN CHARACTER (8),

3 SSC_DBN CHARACTER (8);

 /�

INCLUDE IDMS (DEPARTMENT);

 �/

28 1 � DECLARE 1 DEPARTMENT,

2 DEPT_ID_�41� PICTURE '(4)9',

2 DEPT_NAME_�41� CHARACTER (45),

2 DEPT_HEAD_ID_�41� PICTURE '(4)9',

2 FILLER���2 CHARACTER (3);

 /�

INCLUDE IDMS (EMPLOYEE);

 �/

3� 1 � DECLARE 1 EMPLOYEE,

2 EMP_ID_�415 PICTURE '(4)9',

 2 EMP_NAME_�415,

3 EMP_FIRST_NAME_�415 CHARACTER (1�),

3 EMP_LAST_NAME_�415 CHARACTER (15),

 2 EMP_ADDRESS_�415,

3 EMP_STREET_�415 CHARACTER (2�),

3 EMP_CITY_�415 CHARACTER (15),

3 EMP_STATE_�415 CHARACTER (2),

 3 EMP_ZIP_�415,

4 EMP_ZIP_FIRST_FIVE_�415 CHARACTER (5),

4 EMP_ZIP_LAST_FOUR_�415 CHARACTER (4),

2 EMP_PHONE_�415 PICTURE '(1�)9',

2 STATUS_�415 CHARACTER (2),

2 SS_NUMBER_�415 PICTURE '(9)9',

 2 START_DATE_�415,

3 START_YEAR_�415 PICTURE '(2)9',

3 START_MONTH_�415 PICTURE '(2)9',

3 START_DAY_�415 PICTURE '(2)9',

 2 TERMINATION_DATE_�415,

3 TERMINATION_YEAR_�415 PICTURE '(2)9',

3 TERMINATION_MONTH_�415 PICTURE '(2)9',

3 TERMINATION_DAY_�415 PICTURE '(2)9',

 2 BIRTH_DATE_�415,

3 BIRTH_YEAR_�415 PICTURE '(2)9',

3 BIRTH_MONTH_�415 PICTURE '(2)9',

3 BIRTH_DAY_�415 PICTURE '(2)9',

2 FILLER���3 CHARACTER (2),

2 FILLER���4 CHARACTER (4);

 /���/

 /� PROCESSING FOLLOWS �/

/� OPEN THE FILES �/

/� INFILE ── INPUT �/

/� OUTFILE ── OUTPUT �/

/� SYSPRINT ── USED BY IDMS_STATUS �/

31 1 � OPEN FILE (INFILE);

32 1 � OPEN FILE (OUTFILE);

33 1 � OPEN FILE (SYSPRINT);

34 1 � ON ENDFILE (INFILE) EOF = YES;

E-14 CA-IDMS DML Reference — PL/I

E.3 Sample batch program

/� BIND RUN UNIT AND RECORDS EXPLICITLY �/

 /�

 BIND RUN_UNIT DMLP���1

 NODENAME ('')

 DBNAME ('');

 �/

35 1 � /� IDMS PL/I DML EXPANSION �/ DO;

 36 1 1 DML_SEQUENCE=1;

 37 1 1 SSC_NODN='';

 38 1 1 SSC_DBN='';

39 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (59)

 ,SUBSCHEMA_CTRL

 ,'EMPSS�1 '

 4� 1 1); END;

 41 1 � CALL IDMS_STATUS;

 /�

BIND RECORD (EMPLOYEE); DMLP���2

 �/

42 1 � /� IDMS PL/I DML EXPANSION �/ DO;

 43 1 1 DML_SEQUENCE=2;

44 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'EMPLOYEE '

 ,EMPLOYEE

 45 1 1); END;

 46 1 � CALL IDMS_STATUS;

 /�

BIND RECORD (DEPARTMENT); DMLP���3

 �/

47 1 � /� IDMS PL/I DML EXPANSION �/ DO;

 48 1 1 DML_SEQUENCE=3;

49 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'DEPARTMENT '

 ,DEPARTMENT

 5� 1 1); END;

 51 1 � CALL IDMS_STATUS;

 /�

 READY; DMLP���4

 �/

52 1 � /� IDMS PL/I DML EXPANSION �/ DO;

 53 1 1 DML_SEQUENCE=4;

54 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (37)

 55 1 1); END;

 56 1 � CALL IDMS_STATUS;

57 1 � READ FILE (INFILE) INTO (DEPT_IN_REC);

58 1 � DO WHILE (EOF);

59 1 1 DB_END_OF_SET = NO;

6� 1 1 DEPT_ID_�41� = DEPT_ID_IN;

 /�

OBTAIN CALC RECORD (DEPARTMENT); DMLP���5

 �/

61 1 1 /� IDMS PL/I DML EXPANSION �/ DO;

 62 1 2 DML_SEQUENCE=5;

63 1 2 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (32)

 ,'DEPARTMENT '

 ,IDBMSCOM (43)

 64 1 2); END;

/� �326 MEANS �/

/� DEPT NOT FOUND �/

65 1 1 IF ERROR_STATUS = '�326' THEN CALL NO_DEPT;

 66 1 1 ELSE

 DO;

 /�

IF SET (DEPT_EMPLOYEE) EMPTY DMLP���6

 �/

67 1 2 /� IDMS PL/I DML EXPANSION �/ DO;

 68 1 3 DML_SEQUENCE=6;

69 1 3 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (64)

 ,'DEPT-EMPLOYEE '

 7� 1 3); END;

 71 1 2 IF ERROR_STATUS='����'

THEN CALL NO_EMP;

 72 1 2 ELSE

 CALL NEW_DEPT;

73 1 2 DO UNTIL (DB_END_OF_SET);

 /�

OBTAIN NEXT RECORD (EMPLOYEE) DMLP���7

 SET (DEPT_EMPLOYEE);

 �/

74 1 3 /� IDMS PL/I DML EXPANSION �/ DO;

 75 1 4 DML_SEQUENCE=7;

76 1 4 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (1�)

 ,'EMPLOYEE '

 ,'DEPT-EMPLOYEE '

 ,IDBMSCOM (43)

 77 1 4); END;

78 1 3 IF ERROR_STATUS = '�3�7' THEN

DB_END_OF_SET = YES;

 79 1 3 ELSE

 CALL IDMS_STATUS;

 8� 1 3 IF DB_END_OF_SET THEN

 DO;

/� MOVE FIELDS TO �/

/� OUTPUT RECORD �/

 81 1 4 DEPT_ID_OUT = DEPT_ID_�41�;

 82 1 4 EMP_ID_OUT = EMP_ID_�415;

Appendix E. Sample Programs and Database Definition E-15

E.3 Sample batch program

83 1 4 EMP_LNAME_OUT = EMP_LAST_NAME_�415;

84 1 4 EMP_FNAME_OUT = EMP_FIRST_NAME_�415;

 85 1 4 CC = DOUBLE_SPACE;

 86 1 4 PRINT_LINE = SPACES;

 87 1 4 PRINT_LINE = PRTREC;

 88 1 4 CALL PRINT_A_LINE;

89 1 4 END; /� END PRINTING DO �/

9� 1 3 END; /� END DO UNTIL �/

91 1 2 END; /� END �326 ELSE DO �/

92 1 1 READ FILE (INFILE) INTO (DEPT_IN_REC);

93 1 1 END; /� END DO WHILE EOF �/

 94 1 � CALL END_PROCESSING;

 95 1 � NEW_DEPT: PROC;

96 2 � PRINT_LINE = SPACES; /� NEW PAGE FOR EACH �/

97 2 � CC = NEW_PAGE; /� DEPARTMENT �/

98 2 � PRINT_LINE = DEPT_HEADER;

 99 2 � CALL PRINT_A_LINE;

1�� 2 � PRINT_LINE = SPACES;

1�1 2 � CC = DOUBLE_SPACE;

1�2 2 � PRINT_LINE = DEPT_ID_�41�;

 1�3 2 � CALL PRINT_A_LINE;

1�4 2 � PRINT_LINE = SPACES;

1�5 2 � CC = DOUBLE_SPACE;

1�6 2 � PRINT_LINE = PRTHEAD;

 1�7 2 � CALL PRINT_A_LINE;

 1�8 2 � END NEW_DEPT;

 1�9 1 � NO_DEPT: PROC;

11� 2 � PRINT_LINE = SPACES;

111 2 � CC = NEW_PAGE;

112 2 � PRINT_LINE = DEPT_ID_IN;

 113 2 � CALL PRINT_A_LINE;

114 2 � PRINT_LINE = SPACES;

115 2 � CC = DOUBLE_SPACE;

116 2 � PRINT_LINE = '�� DEPARTMENT SPECIFIED ABOVE NOT FOUND ��';

 117 2 � CALL PRINT_A_LINE;

 118 2 � END NO_DEPT;

 119 1 � NO_EMP: PROC;

12� 2 � PRINT_LINE = SPACES;

121 2 � CC = NEW_PAGE;

122 2 � PRINT_LINE = DEPT_ID_IN;

 123 2 � CALL PRINT_A_LINE;

124 2 � PRINT_LINE = SPACES;

125 2 � CC = DOUBLE_SPACE;

126 2 � PRINT_LINE = DEPT_ID_�41�;

 127 2 � CALL PRINT_A_LINE;

128 2 � PRINT_LINE = SPACES;

129 2 � CC = DOUBLE_SPACE;

13� 2 � PRINT_LINE = '�� DEPARTMENT SPECIFIED IS EMPTY ���';

 131 2 � CALL PRINT_A_LINE;

 132 2 � END NO_EMP;

 133 1 � END_PROCESSING: PROC;

 /�

 FINISH; DMLP���8

 �/

134 2 � /� IDMS PL/I DML EXPANSION �/ DO;

 135 2 1 DML_SEQUENCE=8;

136 2 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (2)

 137 2 1); END;

138 2 � CLOSE FILE (INFILE);

139 2 � CLOSE FILE (OUTFILE);

14� 2 � CLOSE FILE (SYSPRINT);

 141 2 � END END_PROCESSING;

 142 1 � PRINT_A_LINE: PROC;

143 2 � WRITE FILE (OUTFILE) FROM (PRINT_AREA);

 144 2 � END PRINT_A_LINE;

INCLUDE IDMS (IDMS_STATUS);

 �/

145 1 � IDMS_STATUS: PROC;

/� THE IDMS_STATUS PROCEDURE IS CALLED BY THE USER AFTER �/

/� EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN �/

/� MADE FOR ANY EXPECTED NON-ZERO ERROR_STATUS CONDITIONS. �/

/� IT DETECTS A NON-ZERO ERROR_STATUS AND ABNORMALLY �/

/� TERMINATES THE PROGRAM ACCORDINGLY. �/

146 2 � IF ERROR_STATUS='����' THEN GOTO END_STATUS;

147 2 � PUT SKIP EDIT ('PROGRAM NAME ──────', PROGRAM,

'ERROR STATUS ──────', ERROR_STATUS,

'ERROR RECORD ──────', ERROR_RECORD,

'ERROR SET ─────────', ERROR_SET,

'ERROR AREA ────────', ERROR_AREA,

'LAST GOOD RECORD ──', RECORD_NAME,

'LAST GOOD AREA ────', AREA_NAME,

'DML SEQUENCE ──────', DML_SEQUENCE)

 (A(19),X(5),A(8),SKIP,A(19),X(5),A(4),5(SKIP,

 A(19),X(5),A(16)),SKIP,A(19),X(5),F(1�));

 /�

 ROLLBACK;

 �/

148 2 � /� IDMS PL/I DML EXPANSION �/ DO;

 149 2 1 DML_SEQUENCE=9;

15� 2 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (67)

 151 2 1); END;

 152 2 � CALL ABORT;

153 2 � END_STATUS: END;

E-16 CA-IDMS DML Reference — PL/I

E.3 Sample batch program

 154 1 � END DEPTRPT;

Appendix E. Sample Programs and Database Definition E-17

E.4 Sample online program

E.4 Sample online program

The following CA-IDMS/DC application illustrates the structure of CA-IDMS/DC
programs that accept data from a terminal operator and retrieve information from the
database. The application program highlights the following database and data
communications features:

■ Mapping mode input and output

■ Automatic editing and error handling

 ■ Pseudo-conversational transactions

The application's components, runtime requirements, and DML code are described in
the following subsections.

 E.4.1 Application components

The application comprises a program, two tasks, a map, and a subschema:

■ Program — The EMPDISP program either performs a MAP OUT to start a
session or performs a MAP IN, database access, and a MAP OUT.

■ Tasks — The task codes EMPDISP and EMPDISP2 affect the program flow of
control:

– EMPDISP causes the program to perform the FIRST_TIME portion of the
program, mapping out the empty screen.

– EMPDISP2 causes the program to perform the SECOND_TIME portion of
the program, mapping in the data, checking the AID byte, performing the
database access portion of the program, and mapping out either an error
message or employee data.

 ■

E-18 CA-IDMS DML Reference — PL/I

E.4 Sample online program

Map — The application uses a map named EMPLMAP to communicate with the
terminal operator. The following illustrates the EMPLMAP map.

� �
��� EMPLOYEE INFORMATION SCREEN ���

 EMPLOYEE ID:

 FIRST NAME:

LAST NAME :

 ADDRESS:

 :

 : :

TYPE AN EMPLOYEE ID AND PRESS ENTER �� PRESS PA1 TO EXIT

� �

The EMPLMAP definition specifies:

– Six literal fields (including the title EMPLOYEE INFORMATION SCREEN).

– Seven variable data fields, to contain: EMPLOYEE ID, LAST NAME, FIRST
NAME, and ADDRESS.

– Automatic editing for the EMPLOYEE ID field specifies that the field is in
error if the ID you entered does not comply with the field's external picture
(PIC 9(4)).

– Messages are output in the $MESSAGE field.

■ Subschema — The application uses the EMPSS01 subschema.

E.4.2 Application runtime requirements

The following requirements must be met to execute the sample application under
CA-IDMS/DC:

■ Define and generate the EMPLMAP map.

■ Compile and link edit the EMPDISP program into a load library that is identified
to CA-IDMS/DC.

■ Define the EMPDISP program to the CA-IDMS/DC system either by submitting
PROGRAM statements to the system generation compiler or by using the DCMT
VARY DYNAMIC PROGRAM command at runtime.

■ Define the EMPLMAP map and the EMPSS01 subschema to the CA-IDMS/DC
system by submitting PROGRAM statements to the system generation compiler.

Appendix E. Sample Programs and Database Definition E-19

E.4 Sample online program

Maps and subschemas are defined automatically at system startup if null program
definition elements (PDEs) have been allocated for them at system generation.

E-20 CA-IDMS DML Reference — PL/I

E.4 Sample online program

E.4.3 Online input to the DML precompiler

The following is the PL/I online program input to the DML precompiler.

 /�RETRIEVAL�/

 /�DMLIST�/

 /�NO_ACTIVITY_LOG�/

 /�SCHEMA_COMMENTS�/

EMPDISP: PROC OPTIONS (MAIN) REORDER;

DCL (EMPSS�1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 1��)

MODE (IDMS_DC) DEBUG;

DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

 DCL ADDR BUILTIN;

 DCL STRING BUILTIN;

DCL (EMPLMAP MAP) TYPE (STANDARD);

 DCL TASK_CODE CHAR (8);

DCL EMPDISP CHAR (8) INIT ('EMPDISP');

DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

 DCL DC_AID_IND_V CHAR (1);

/� LOGICAL CONSTANTS �/

 DCL YES BIT(1) INIT ('1'B);

 DCL NO BIT(1) INIT ('�'B);

 DCL 1 PROGRAM_MESSAGES,

 3 DISPLAY_MSG CHAR (36)

INIT (' EMPLOYEE INFORMATION DISPLAYED '),

 3 NOT_FOUND_MSG CHAR (37)

INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

INCLUDE IDMS (SUBSCHEMA_CTRL);

INCLUDE IDMS (EMPLOYEE);

INCLUDE IDMS (MAP_CONTROLS);

 /� PROCESSING FOLLOWS �/

 MAIN_LINE: BEGIN;

/� ESTABLISH ADDRESSABILITY FOR �/

BIND MAP (EMPLMAP);

 CALL IDMS_STATUS;

BIND MAP (EMPLMAP) RECORD (EMPLOYEE);

 CALL IDMS_STATUS;

/� DETERMINE THE TASK CODE �/

ACCEPT TASK CODE INTO (TASK_CODE);

 CALL IDMS_STATUS;

IF TASK_CODE = EMPDISP

THEN CALL FIRST_TIME;

IF TASK_CODE = EMPDISP2

THEN CALL SECOND_TIME;

/� OTHERWISE RETURN TO IDMS-DC �/

 DC RETURN;

 FIRST_TIME: PROC;

MODIFY MAP (EMPLMAP)

FOR ALL BUT DFLD (EMP_ID_�415)

Appendix E. Sample Programs and Database Definition E-21

E.4 Sample online program

 ATTRIBUTES PROTECTED;

 MAP OUT(EMPLMAP)

IO OUTPUT DATA YES NEWPAGE;

 CALL IDMS_STATUS;

DC RETURN NEXT TASK CODE(EMPDISP2);

 END FIRST_TIME;

 SECOND_TIME: PROC;

MAP IN (EMPLMAP)

IO INPUT DATA YES;

 CALL IDMS_STATUS;

/� CHECK WHICH PF KEY WAS PRESSED �/

 INQUIRE MAP(EMPLMAP)

MOVE AID TO (DC_AID_IND_V);

/� STOP IF PA1 (%) WAS PRESSED �/

IF DC_AID_IND_V = '%'

THEN DC RETURN;

 BIND RUN_UNIT;

 CALL IDMS_STATUS;

BIND RECORD (EMPLOYEE);

 CALL IDMS_STATUS;

READY AREA (EMP_DEMO_REGION);

 CALL IDMS_STATUS;

/� OBTAIN THE RECORD �/

OBTAIN CALC RECORD (EMPLOYEE);

IF ERROR_STATUS = '�326' THEN CALL NO_EMP;

 CALL IDMS_STATUS;

 FINISH;

 CALL IDMS_STATUS;

/� TRANSMIT THE DATA BACK TO THE SCREEN �/

 MAP OUT(EMPLMAP)

IO OUTPUT DATA YES NEWPAGE

 MESSAGE(DISPLAY_MSG) LENGTH(36);

 CALL IDMS_STATUS;

DC RETURN NEXT TASK CODE(EMPDISP2);

 END SECOND_TIME;

 NO_EMP: PROC;

/� DO THIS IF EMPLOYEE NOT FOUND �/

 MAP OUT(EMPLMAP)

IO OUTPUT DATA YES NEWPAGE

 MESSAGE(NOT_FOUND_MSG) LENGTH(37);

 CALL IDMS_STATUS;

DC RETURN NEXT TASK CODE(EMPDISP2);

 END NO_EMP;

INCLUDE IDMS (IDMS_STATUS);

END MAIN_LINE; /� END MAIN_LINE �/

 END EMPDISP;

E-22 CA-IDMS DML Reference — PL/I

E.4 Sample online program

E.4.4 Output from the DML precompiler

The following is the online program as it has been output from the DML precompiler.
IDMSDMLP 15.� COMPUTER ASSOCIATES INTERNATIONAL, INC. DML PROCESSOR FOR PL/I DATE TIME PAGE

- - LISTING OF MESSAGES - - �9/27/99 133952�9 ���1

 ����1 /�RETRIEVAL�/

 ����2 /�DMLIST�/

 ����3 /�NO_ACTIVITY_LOG�/

 ����4 /�SCHEMA_COMMENTS�/

����5 EMPDISP: PROC OPTIONS (MAIN) REORDER;

DMLP ����7 DCL (EMPSS�1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 1��)

����8 MODE (IDMS_DC) DEBUG;

����9 DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

 ���1� DCL ADDR BUILTIN;

 ���11 DCL STRING BUILTIN;

DMLP ���13 DCL (EMPLMAP MAP) TYPE (STANDARD);

 ���14

 ���15 DCL TASK_CODE CHAR (8);

���16 DCL EMPDISP CHAR (8) INIT ('EMPDISP');

���17 DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

 ���18 DCL DC_AID_IND_V CHAR (1);

���19 /� LOGICAL CONSTANTS �/

 ���2� DCL YES BIT(1) INIT ('1'B);

 ���21 DCL NO BIT(1) INIT ('�'B);

 ���22 DCL 1 PROGRAM_MESSAGES,

 ���23 3 DISPLAY_MSG CHAR (36)

���24 INIT (' EMPLOYEE INFORMATION DISPLAYED '),

 ���25 3 NOT_FOUND_MSG CHAR (37)

���26 INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

 ���27

DMLP ���29 INCLUDE IDMS (SUBSCHEMA_CTRL);

 ��1��

DMLP ��1�2 INCLUDE IDMS (EMPLOYEE);

DMLP ��133 INCLUDE IDMS (MAP_CONTROLS);

 ��171

 ��172 /� PROCESSING FOLLOWS �/

 ��173

 ��174 MAIN_LINE: BEGIN;

��175 /� ESTABLISH ADDRESSABILITY FOR �/

DMLP���1 ��177 BIND MAP (EMPLMAP);

 ��2�8 CALL IDMS_STATUS;

DMLP���2 ��21� BIND MAP (EMPLMAP) RECORD (EMPLOYEE);

 ��219 CALL IDMS_STATUS;

��22� /� DETERMINE THE TASK CODE �/

DMLP���3 ��222 ACCEPT TASK CODE INTO (TASK_CODE);

 ��231 CALL IDMS_STATUS;

 ��232

��233 IF TASK_CODE = EMPDISP

��234 THEN CALL FIRST_TIME;

��235 IF TASK_CODE = EMPDISP2

��236 THEN CALL SECOND_TIME;

 ��237

 ��238

 ��239

��24� /� OTHERWISE RETURN TO IDMS-DC �/

DMLP���4 ��242 DC RETURN;

 ��249

 ��25� FIRST_TIME: PROC;

DMLP���5 ��252 MODIFY MAP (EMPLMAP)

��253 FOR ALL BUT DFLD (EMP_ID_�415)

 ��254 ATTRIBUTES PROTECTED;

 ��267

DMLP���6 ��269 MAP OUT(EMPLMAP)

��27� IO OUTPUT DATA YES NEWPAGE;

 ��284 CALL IDMS_STATUS;

DMLP���7 ��286 DC RETURN NEXT TASK CODE(EMPDISP2);

 ��295 END FIRST_TIME;

 ��296

 ��297 SECOND_TIME: PROC;

DMLP���8 ��299 MAP IN (EMPLMAP)

 ��3�� IO INPUT DATA YES;

 ��314 CALL IDMS_STATUS;

��315 /� CHECK WHICH PF KEY WAS PRESSED �/

DMLP���9 ��317 INQUIRE MAP(EMPLMAP)

��318 MOVE AID TO (DC_AID_IND_V);

 ��328

��329 /� STOP IF PA1 (%) WAS PRESSED �/

��33� IF DC_AID_IND_V = '%'

DMLP��1� ��331 THEN

 ��333 DC RETURN;

 ��34�

DMLP��11 ��342 BIND RUN_UNIT;

 ��351 CALL IDMS_STATUS;

DMLP��12 ��353 BIND RECORD (EMPLOYEE);

 ��362 CALL IDMS_STATUS;

DMLP��13 ��364 READY AREA (EMP_DEMO_REGION);

 ��372 CALL IDMS_STATUS;

��373 /� OBTAIN THE RECORD �/

DMLP��14 ��375 OBTAIN CALC RECORD (EMPLOYEE);

��384 IF ERROR_STATUS = '�326' THEN CALL NO_EMP;

 ��385 CALL IDMS_STATUS;

DMLP��15 ��387 FINISH;

 ��394 CALL IDMS_STATUS;

��395 /� TRANSMIT THE DATA BACK TO THE SCREEN �/

DMLP��16 ��397 MAP OUT(EMPLMAP)

 ��398 IO OUTPUT DATA YES NEWPAGE

 ��399 MESSAGE(DISPLAY_MSG) LENGTH(36);

 ��415 CALL IDMS_STATUS;

DMLP��17 ��417 DC RETURN NEXT TASK CODE(EMPDISP2);

 ��426

Appendix E. Sample Programs and Database Definition E-23

E.4 Sample online program

 ��427 END SECOND_TIME;

 ��428

 ��429 NO_EMP: PROC;

��43� /� DO THIS IF EMPLOYEE NOT FOUND �/

DMLP��18 ��432 MAP OUT(EMPLMAP)

��433 IO OUTPUT DATA YES NEWPAGE

 ��434 MESSAGE(NOT_FOUND_MSG) LENGTH(37);

 ��45� CALL IDMS_STATUS;

DMLP��19 ��452 DC RETURN NEXT TASK CODE(EMPDISP2);

 ��461 END NO_EMP;

 ��462

DMLP ��464 INCLUDE IDMS (IDMS_STATUS);

 ��465 IDMS_STATUS: PROC;

��466 /� THE IDMS_STATUS PROCEDURE MAY BE CALLED BY THE USER AFTER �/

��467 /� EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN �/

��468 /� MADE FOR ANY EXPECTED NON_ZERO ERROR STATUS CONDITIONS. �/

��469 /� IT DETECTS A NON_ZERO ERROR_STATUS AND TERMINATES THE �/

��47� /� PROGRAM WITH A SNAP OF THE SUBSCHEMA_CTRL AREA AND AN �/

��471 /� ABEND WITH THE ERROR_STATUS AS THE ABEND CODE. �/

��472 IF ERROR_STATUS='����' THEN GOTO END_STATUS;

��473 SSC_ERRSTAT_SAVE=ERROR_STATUS; /� SAVE THE ERROR_STATUS �/

��474 SSC_DMLSEQ_SAVE=DML_SEQUENCE; /� SAVE DML_SEQUENCE �/

��475 /� SNAP THE SUBSCHEMA_CTRL AREA �/

DMLP��2� ��477 SNAP FROM (SUBSCHEMA_CTRL) TO (SUBSCHEMA_CTRL_END);

��49� /� ABEND �/

DMLP��21 ��492 ABEND CODE (SSC_ERRSTAT_SAVE);

 ��5�1 END_STATUS: END;

��5�2 END MAIN_LINE; /� END MAIN_LINE �/

 ��5�3 END EMPDISP;

E-24 CA-IDMS DML Reference — PL/I

E.4 Sample online program

E.4.5 Output from the PL/I compiler

The following is the PL/I program as output by the PL/I compiler.
PL/I OPTIMIZING COMPILER /�RETRIEVAL�/ PAGE 2

 SOURCE LISTING

STMT LEV NT

 /�RETRIEVAL�/

 /�DMLIST�/

 /�NO_ACTIVITY_LOG�/

 /�SCHEMA_COMMENTS�/

1 � EMPDISP: PROC OPTIONS (MAIN) REORDER;

 /�

DCL (EMPSS�1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 1��)

MODE (IDMS_DC) DEBUG;

 �/

2 1 � DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

 3 1 � DCL ADDR BUILTIN;

 4 1 � DCL STRING BUILTIN;

 /�

DCL (EMPLMAP MAP) TYPE (STANDARD);

 �/

 5 1 � DCL TASK_CODE CHAR (8);

6 1 � DCL EMPDISP CHAR (8) INIT ('EMPDISP');

7 1 � DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

 8 1 � DCL DC_AID_IND_V CHAR (1);

/� LOGICAL CONSTANTS �/

 9 1 � DCL YES BIT(1) INIT ('1'B);

 1� 1 � DCL NO BIT(1) INIT ('�'B);

11 1 � DCL 1 PROGRAM_MESSAGES,

 3 DISPLAY_MSG CHAR (36)

INIT (' EMPLOYEE INFORMATION DISPLAYED '),

 3 NOT_FOUND_MSG CHAR (37)

INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

 /�

INCLUDE IDMS (SUBSCHEMA_CTRL);

 �/

12 1 � DECLARE 1 SUBSCHEMA_CTRL,

3 PROGRAM CHARACTER (8) INITIAL (' '),

3 ERROR_STATUS CHARACTER (4) INITIAL ('14��'),

3 DBKEY FIXED BINARY (31),

3 RECORD_NAME CHARACTER (16) INITIAL (' '),

3 AREA_NAME CHARACTER (16) INITIAL (' '),

3 ERROR_SET CHARACTER (16) INITIAL (' '),

3 ERROR_RECORD CHARACTER (16) INITIAL (' '),

3 ERROR_AREA CHARACTER (16) INITIAL (' '),

 3 IDBMSCOM_AREA,

5 IDBMSCOM (1��) CHARACTER (1),

3 DIRECT_DBKEY FIXED BINARY (31),

 3 DCBMSCOM_AREA,

5 DCBMSCOM (1��) CHARACTER (1),

 3 DCCALIGN_AREA,

5 FILLER���1 CHARACTER (4),

5 DCCALIGN FLOAT BINARY (53),

5 FILLER���2 CHARACTER (8);

13 1 � DECLARE 1 SSC_ERRSAVE_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCCALIGN_AREA)),

3 SSC_ERRSTAT_SAVE CHARACTER (4),

3 SSC_DMLSEQ_SAVE FIXED BINARY (31),

3 DML_SEQUENCE FIXED BINARY (31),

3 RECORD_OCCUR FIXED BINARY (31),

3 SUBSCHEMA_CTRL_END CHARACTER (4);

14 1 � DECLARE 1 DCCFN_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

3 FILLER���3 CHARACTER (44),

3 DCCSTR1 CHARACTER (16),

3 DCCNUM1 FIXED BINARY (31),

3 DCCNUM2 FIXED BINARY (31),

3 DCCNUM3 FIXED BINARY (31),

3 DCCFLG1 FIXED BINARY (15),

3 DCCFLG2 FIXED BINARY (15),

3 DCCFLG3 FIXED BINARY (15),

3 DCCFLG4 FIXED BINARY (15),

3 DCCFLG5 FIXED BINARY (15),

3 DCCFLG6 FIXED BINARY (15),

3 FILLER���4 CHARACTER (4),

3 DCCDBLWK CHARACTER (8);

15 1 � DECLARE 1 DCCPT_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

3 FILLER���5 CHARACTER (6�),

 3 DCCPT1 POINTER,

 3 DCCPT2 POINTER;

16 1 � DECLARE 1 DCCPN_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

3 FILLER���6 CHARACTER (44),

3 DCCPNUM1 FIXED DECIMAL(11,�),

3 FILLER���7 CHARACTER (1�),

3 DCCPNUM2 FIXED DECIMAL(7,�);

17 1 � DECLARE 1 DCCSTR_AREA3 BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

3 FILLER���8 CHARACTER (44),

3 DCCSTR4 CHARACTER (4),

3 DCCSTR5 CHARACTER (4),

3 DCCSTR3 CHARACTER (8);

18 1 � DECLARE 1 DCCSTR_AREA2 BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

3 FILLER���9 CHARACTER (44),

3 DCCSTR2 CHARACTER (8);

19 1 � DECLARE 1 DCCSTR_AREA1 BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

3 FILLER��1� CHARACTER (44),

3 DCCSTR6 CHARACTER (32),

3 DCCNUH1 FIXED BINARY (15),

3 FILLER��11 CHARACTER (2),

3 DC_ABEND_CODE CHARACTER (4);

2� 1 � DECLARE 1 DCCPLI_DEFS BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

Appendix E. Sample Programs and Database Definition E-25

E.4 Sample online program

3 DCCR14SV FIXED BINARY (31),

3 DCCPARMS (1�) FIXED BINARY (31);

21 1 � DECLARE 1 AREA_RNAME BASED(ADDR(SUBSCHEMA_CTRL.AREA_NAME)),

3 SSC_DNO CHARACTER (8),

3 SSC_DNA CHARACTER (8);

22 1 � DECLARE 1 RRECORD_NAME BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME)),

3 SSC_NODN CHARACTER (8),

3 SSC_DBN CHARACTER (8);

 /�

INCLUDE IDMS (EMPLOYEE);

 �/

23 1 � DECLARE 1 EMPLOYEE,

2 EMP_ID_�415 PICTURE '(4)9',

 2 EMP_NAME_�415,

3 EMP_FIRST_NAME_�415 CHARACTER (1�),

3 EMP_LAST_NAME_�415 CHARACTER (15),

 2 EMP_ADDRESS_�415,

3 EMP_STREET_�415 CHARACTER (2�),

3 EMP_CITY_�415 CHARACTER (15),

3 EMP_STATE_�415 CHARACTER (2),

 3 EMP_ZIP_�415,

4 EMP_ZIP_FIRST_FIVE_�415 CHARACTER (5),

4 EMP_ZIP_LAST_FOUR_�415 CHARACTER (4),

2 EMP_PHONE_�415 PICTURE '(1�)9',

2 STATUS_�415 CHARACTER (2),

2 SS_NUMBER_�415 PICTURE '(9)9',

 2 START_DATE_�415,

3 START_YEAR_�415 PICTURE '(2)9',

3 START_MONTH_�415 PICTURE '(2)9',

3 START_DAY_�415 PICTURE '(2)9',

 2 TERMINATION_DATE_�415,

3 TERMINATION_YEAR_�415 PICTURE '(2)9',

3 TERMINATION_MONTH_�415 PICTURE '(2)9',

3 TERMINATION_DAY_�415 PICTURE '(2)9',

 2 BIRTH_DATE_�415,

3 BIRTH_YEAR_�415 PICTURE '(2)9',

3 BIRTH_MONTH_�415 PICTURE '(2)9',

3 BIRTH_DAY_�415 PICTURE '(2)9',

2 FILLER��12 CHARACTER (2),

2 FILLER��13 CHARACTER (4);

 /�

INCLUDE IDMS (MAP_CONTROLS);

 �/

24 1 � DECLARE 1 MRB_EMPLMAP,

5 MRB_EMPLMAP_ID CHARACTER (8),

 5 MRB_EMPLMAP_MCOMP_VER,

8 MRB_EMPLMAP_MCOMP_DATE CHARACTER (8),

8 MRB_EMPLMAP_MCOMP_TIME CHARACTER (6),

8 MRB_EMPLMAP_MCOMP_VERID CHARACTER (2),

5 MRB_EMPLMAP_SUBSCHEMA CHARACTER (8),

5 MRB_EMPLMAP_FLGS (4) CHARACTER (1),

5 FILLER��14 CHARACTER (6),

5 MRB_EMPLMAP_NFLDS FIXED BINARY (15),

5 MRB_EMPLMAP_NRECS FIXED BINARY (15),

5 MRB_EMPLMAP_RECOF FIXED BINARY (15),

5 MRB_EMPLMAP_PERM_CURSOR CHARACTER (2),

5 MRB_EMPLMAP_TEMP_CURSOR CHARACTER (2),

5 MRB_EMPLMAP_PERM_WCC CHARACTER (1),

5 MRB_EMPLMAP_TEMP_WCC CHARACTER (1),

5 MRB_EMPLMAP_CURSOR CHARACTER (2),

5 MRB_EMPLMAP_AID CHARACTER (1),

5 MRB_EMPLMAP_INPUT_FLGS CHARACTER (1),

5 MRB_EMPLMAP_SEGVIEW CHARACTER (1),

5 FILLER��15 CHARACTER (1),

5 MRB_EMPLMAP_MREO FIXED BINARY (15),

5 MRB_EMPLMAP_ERR_CNT FIXED BINARY (15),

5 MRB_EMPLMAP_ATTR_FLGS (4) CHARACTER (1),

5 MRB_EMPLMAP_CURR_MFLD FIXED BINARY (15),

5 MRB_EMPLMAP_XTYP CHARACTER (1),

5 FILLER��16 CHARACTER (1),

5 MRB_EMPLMAP_MRE_XLEN FIXED BINARY (15),

5 MRB_EMPLMAP_MRB_XLEN FIXED BINARY (15),

 5 MRB_EMPLMAP_MRE (8),

8 MRB_EMPLMAP_MRE_FLGS (8) CHARACTER (1),

8 MRB_EMPLMAP_MRE_INLEN FIXED BINARY (15),

8 MRB_EMPLMAP_MRE_PAD_CHAR (2) CHARACTER (1),

8 MRB_EMPLMAP_MRE_FLG2 (2) CHARACTER (1),

5 MRB_EMPLMAP_RECS (1) FIXED BINARY (31),

5 MRB_EMPLMAP_END CHARACTER (1),

5 MRB_EMPLMAP_MRE_SUB FIXED BINARY (15);

 /� PROCESSING FOLLOWS �/

 25 1 � MAIN_LINE: BEGIN;

/� ESTABLISH ADDRESSABILITY FOR �/

 /�

BIND MAP (EMPLMAP); DMLP���1

 �/

26 2 � /� IDMS PL/I DML EXPANSION �/ DO;

 27 2 1 DML_SEQUENCE=1;

 28 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

29 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (9�)

 ,MRB_EMPLMAP

 ,MRB_EMPLMAP_END

 3� 2 1); END;

 31 2 � STRING(MRB_EMPLMAP_MCOMP_VER)=

 '11/�4/87172444R2';

 32 2 � MRB_EMPLMAP_SUBSCHEMA=

 'EMPSS�1';

 33 2 � MRB_EMPLMAP_ID=

 'EMPLMAP';

 34 2 � MRB_EMPLMAP_NFLDS=

 8;

 35 2 � MRB_EMPLMAP_NRECS=

E-26 CA-IDMS DML Reference — PL/I

E.4 Sample online program

 1;

 36 2 � MRB_EMPLMAP_RECOF=

 112;

 37 2 � MRB_EMPLMAP_MREO=

 76;

 38 2 � MRB_EMPLMAP_XTYP=

 '�';

 39 2 � MRB_EMPLMAP_MRE_XLEN=

 �;

 4� 2 � MRB_EMPLMAP_MRB_XLEN=

 �;

 41 2 � MRB_EMPLMAP_SEGVIEW=

 'N';

 42 2 � CALL IDMS_STATUS;

 /�

BIND MAP (EMPLMAP) RECORD (EMPLOYEE); DMLP���2

 �/

43 2 � /� IDMS PL/I DML EXPANSION �/ DO;

 44 2 1 DML_SEQUENCE=2;

 45 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

46 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (91)

 ,MRB_EMPLMAP_RECS (1)

 ,EMPLOYEE

 47 2 1); END;

 48 2 � CALL IDMS_STATUS;

/� DETERMINE THE TASK CODE �/

 /�

ACCEPT TASK CODE INTO (TASK_CODE); DMLP���3

 �/

49 2 � /� IDMS PL/I DML EXPANSION �/ DO;

 5� 2 1 DML_SEQUENCE=3;

 51 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 52 2 1 DCCNUM1=1;

53 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (2)

 54 2 1); END;

 55 2 � TASK_CODE=DCCSTR6;

 56 2 � CALL IDMS_STATUS;

57 2 � IF TASK_CODE = EMPDISP

THEN CALL FIRST_TIME;

58 2 � IF TASK_CODE = EMPDISP2

THEN CALL SECOND_TIME;

/� OTHERWISE RETURN TO IDMS-DC �/

 /�

 DC RETURN; DMLP���4

 �/

59 2 � /� IDMS PL/I DML EXPANSION �/ DO;

 6� 2 1 DML_SEQUENCE=4;

 61 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

62 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 63 2 1); END;

 64 2 � FIRST_TIME: PROC;

 /�

MODIFY MAP (EMPLMAP) DMLP���5

FOR ALL BUT DFLD (EMP_ID_�415)

 ATTRIBUTES PROTECTED;

 �/

65 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 66 3 1 DML_SEQUENCE=5;

 67 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 68 3 1 DCCNUM1=8;

 69 3 1 DCCFLG1=768;

 7� 3 1 DCCFLG3=�;

 71 3 1 DCCFLG4=�;

72 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (93)

 ,MRB_EMPLMAP

 ,MRB_EMPLMAP_MRE (1)

 73 3 1); END;

 /�

 MAP OUT(EMPLMAP) DMLP���6

IO OUTPUT DATA YES NEWPAGE;

 �/

74 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 75 3 1 DML_SEQUENCE=6;

 76 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 77 3 1 DCCFLG1=5;

 78 3 1 DCCFLG2=16;

 79 3 1 DCCFLG3=1;

 8� 3 1 DCCFLG4=�;

 81 3 1 DCCFLG5=�;

 82 3 1 DCCFLG6=1;

83 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 84 3 1); END;

 85 3 � CALL IDMS_STATUS;

 /�

DC RETURN NEXT TASK CODE(EMPDISP2); DMLP���7

 �/

86 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 87 3 1 DML_SEQUENCE=7;

 88 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 89 3 1 DCCSTR2=EMPDISP2;

 9� 3 1 DCCFLG1=128;

91 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 92 3 1); END;

Appendix E. Sample Programs and Database Definition E-27

E.4 Sample online program

 93 3 � END FIRST_TIME;

 94 2 � SECOND_TIME: PROC;

 /�

MAP IN (EMPLMAP) DMLP���8

IO INPUT DATA YES;

 �/

95 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 96 3 1 DML_SEQUENCE=8;

 97 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 98 3 1 DCCFLG1=6;

 99 3 1 DCCFLG2=4;

 1�� 3 1 DCCFLG3=�;

 1�1 3 1 DCCFLG4=�;

 1�2 3 1 DCCFLG5=�;

 1�3 3 1 DCCFLG6=�;

1�4 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 1�5 3 1); END;

 1�6 3 � CALL IDMS_STATUS;

/� CHECK WHICH PF KEY WAS PRESSED �/

 /�

 INQUIRE MAP(EMPLMAP) DMLP���9

MOVE AID TO (DC_AID_IND_V);

 �/

1�7 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 1�8 3 1 DML_SEQUENCE=9;

 1�9 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 11� 3 1 DCCNUM1=7;

111 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (92)

 ,MRB_EMPLMAP

 112 3 1); END;

 113 3 � DC_AID_IND_V=DCCSTR2;

/� STOP IF PA1 (%) WAS PRESSED �/

114 3 � IF DC_AID_IND_V = '%'

 THEN DMLP��1�

 /�

 DC RETURN;

 �/

/� IDMS PL/I DML EXPANSION �/ DO;

 115 3 1 DML_SEQUENCE=1�;

 116 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

117 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 118 3 1); END;

 /�

 BIND RUN_UNIT; DMLP��11

 �/

119 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 12� 3 1 DML_SEQUENCE=11;

 121 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

122 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (59)

 ,SUBSCHEMA_CTRL

 ,'EMPSS�1 '

 123 3 1); END;

 124 3 � CALL IDMS_STATUS;

 /�

BIND RECORD (EMPLOYEE); DMLP��12

 �/

125 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 126 3 1 DML_SEQUENCE=12;

 127 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

128 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'EMPLOYEE '

 ,EMPLOYEE

 129 3 1); END;

 13� 3 � CALL IDMS_STATUS;

 /�

READY AREA (EMP_DEMO_REGION); DMLP��13

 �/

131 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 132 3 1 DML_SEQUENCE=13;

 133 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

134 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (37)

 ,'EMP-DEMO-REGION '

 135 3 1); END;

 136 3 � CALL IDMS_STATUS;

/� OBTAIN THE RECORD �/

 /�

OBTAIN CALC RECORD (EMPLOYEE); DMLP��14

 �/

137 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 138 3 1 DML_SEQUENCE=14;

 139 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

14� 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (32)

 ,'EMPLOYEE '

 ,IDBMSCOM (43)

 141 3 1); END;

142 3 � IF ERROR_STATUS = '�326' THEN CALL NO_EMP;

 143 3 � CALL IDMS_STATUS;

 /�

 FINISH; DMLP��15

 �/

144 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 145 3 1 DML_SEQUENCE=15;

 146 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

147 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (2)

E-28 CA-IDMS DML Reference — PL/I

E.4 Sample online program

 148 3 1); END;

 149 3 � CALL IDMS_STATUS;

/� TRANSMIT THE DATA BACK TO THE SCREEN �/

 /�

 MAP OUT(EMPLMAP) DMLP��16

IO OUTPUT DATA YES NEWPAGE

 MESSAGE(DISPLAY_MSG) LENGTH(36);

 �/

15� 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 151 3 1 DML_SEQUENCE=16;

 152 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 153 3 1 DCCFLG1=5;

 154 3 1 DCCFLG2=16;

 155 3 1 DCCFLG3=1;

 156 3 1 DCCFLG4=4;

 157 3 1 DCCFLG5=�;

 158 3 1 DCCFLG6=1;

159 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 ,DISPLAY_MSG

 ,DCBMSCOM (36)

 16� 3 1); END;

 161 3 � CALL IDMS_STATUS;

 /�

DC RETURN NEXT TASK CODE(EMPDISP2); DMLP��17

 �/

162 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 163 3 1 DML_SEQUENCE=17;

 164 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 165 3 1 DCCSTR2=EMPDISP2;

 166 3 1 DCCFLG1=128;

167 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 168 3 1); END;

 169 3 � END SECOND_TIME;

 17� 2 � NO_EMP: PROC;

/� DO THIS IF EMPLOYEE NOT FOUND �/

 /�

 MAP OUT(EMPLMAP) DMLP��18

IO OUTPUT DATA YES NEWPAGE

 MESSAGE(NOT_FOUND_MSG) LENGTH(37);

 �/

171 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 172 3 1 DML_SEQUENCE=18;

 173 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 174 3 1 DCCFLG1=5;

 175 3 1 DCCFLG2=16;

 176 3 1 DCCFLG3=1;

 177 3 1 DCCFLG4=4;

 178 3 1 DCCFLG5=�;

 179 3 1 DCCFLG6=1;

18� 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 ,NOT_FOUND_MSG

 ,DCBMSCOM (37)

 181 3 1); END;

 182 3 � CALL IDMS_STATUS;

 /�

DC RETURN NEXT TASK CODE(EMPDISP2); DMLP��19

 �/

183 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 184 3 1 DML_SEQUENCE=19;

 185 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 186 3 1 DCCSTR2=EMPDISP2;

 187 3 1 DCCFLG1=128;

188 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 189 3 1); END;

 19� 3 � END NO_EMP;

 /�

INCLUDE IDMS (IDMS_STATUS);

 �/

191 2 � IDMS_STATUS: PROC;

/� THE IDMS_STATUS PROCEDURE MAY BE CALLED BY THE USER AFTER �/

/� EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN �/

/� MADE FOR ANY EXPECTED NON_ZERO ERROR STATUS CONDITIONS. �/

/� IT DETECTS A NON_ZERO ERROR_STATUS AND TERMINATES THE �/

/� PROGRAM WITH A SNAP OF THE SUBSCHEMA_CTRL AREA AND AN �/

/� ABEND WITH THE ERROR_STATUS AS THE ABEND CODE. �/

192 3 � IF ERROR_STATUS='����' THEN GOTO END_STATUS;

193 3 � SSC_ERRSTAT_SAVE=ERROR_STATUS; /� SAVE THE ERROR_STATUS �/

194 3 � SSC_DMLSEQ_SAVE=DML_SEQUENCE; /� SAVE DML_SEQUENCE �/

/� SNAP THE SUBSCHEMA_CTRL AREA �/

 /�

SNAP FROM (SUBSCHEMA_CTRL) TO (SUBSCHEMA_CTRL_END);

 �/

195 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 196 3 1 DML_SEQUENCE=2�;

 197 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

198 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (22)

 ,DCCSTR1

 ,DCCSTR1

 ,DCCSTR1

 ,SUBSCHEMA_CTRL

 ,SUBSCHEMA_CTRL_END

 ,DCBMSCOM (1)

 199 3 1); END;

/� ABEND �/

 /�

ABEND CODE (SSC_ERRSTAT_SAVE);

Appendix E. Sample Programs and Database Definition E-29

E.4 Sample online program

 �/

2�� 3 � /� IDMS PL/I DML EXPANSION �/ DO;

 2�1 3 1 DML_SEQUENCE=21;

 2�2 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=�;

 2�3 3 1 DCCSTR4=SSC_ERRSTAT_SAVE;

 2�4 3 1 DCCFLG1=2;

2�5 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (1)

 2�6 3 1); END;

2�7 3 � END_STATUS: END;

2�8 2 � END MAIN_LINE; /� END MAIN_LINE �/

 2�9 1 � END EMPDISP;

E-30 CA-IDMS DML Reference — PL/I

E.5 EMPLOYEE database definition

E.5 EMPLOYEE database definition

The following is a data structure diagram for the EMPLOYEE database. Most of the
examples used in this manual (including the sample programs in this appendix) use the
EMPLOYEE database.

Appendix E. Sample Programs and Database Definition E-31

E-32 CA-IDMS DML Reference — PL/I

Appendix F. Considerations for IBM Language
Environment

F.1 Overview . F-3
F.2 Considerations about LE runtime . F-4
F.3 Running LE-compliant compiler programs under CA-IDMS/DC F-5
F.4 Supported LE functions . F-13
F.5 Unsupported LE functions . F-14

Appendix F. Considerations for IBM Language Environment F-1

F-2 CA-IDMS DML Reference — PL/I

F.1 Overview

 F.1 Overview

What is IBM Language Environment (LE)?: LE is a runtime environment that
replaces the language-specific runtime environments that existed previously. For
example, PL/I had its own runtime environment; COBOL II had another. CA-IDMS
can execute programs that are designed to use the LE runtime environment. It can
also execute programs compiled with pre-LE compilers that use the LE runtime
environment.

Note: This appendix only applies to runtime support in CA-IDMS/DC. It does not
apply to batch or CICS programs that access CA-IDMS.

Language Environment has had several names for different operating systems and
release levels. The term "LE" will be used in this document to refer to the any of the
following unless otherwise noted:

 ■ LE/370

■ LE for OS/390 and VM/ESA

■ LE for VSE/ESA

How can you use LE with CA-IDMS/DC?: To execute online programs using the
LE run-time libraries, follow these steps to bring up your CA-IDMS environment:

1. Ensure that the CA-IDMS system has been generated with a 24-bit reentrant pool
that is large enough to contain the IBM-supplied LE application program interface
module CEEPIPI. The size of this module is approximately 100K.

2. Ensure that the CA-IDMS system has been generated with an XA reentrant pool
that is large enough to maintain residence for several IBM-supplied LE support
modules. Allow 1 megabyte for these programs.

3. Include the LE runtime load libraries in the CDMSLIB loadlib concatenation
before any other IBM language loadlibs that you are using.

Appendix F. Considerations for IBM Language Environment F-3

F.2 Considerations about LE runtime

F.2 Considerations about LE runtime

Running pre-LE programs: There are restrictions that apply when you run pre-LE
programs under LE runtime within CA-IDMS/DC. Pre-LE programs are programs that
were compiled with a non-LE compliant compiler, such as PL/I Release 2.3.

Some of these restrictions are already documented elsewhere in the DML Reference
manuals. Additional restrictions for LE are:

■ Programs compiled under PL/I Release 2.3 and earlier must run without storage
protection.

■ The IBM LE support module CEEPIPI must be loaded once before any PL/I
program is run. This is most easily done by defining CEEPIPI as RESIDENT in
the CA-IDMS/DC sysgen using the following syntax:

ADD PROGRAM CEEPIPI CONCURRENT ENABLED LANGUAGE ASSEMBLER

NONOVERLABYABLE PROGRAM PROTECT REENTRANT RESIDENT REUSABLE .

■ Restrictions mentioned in the IBM documentation apply.

Note: Running pre-LE programs with LE runtime can degrade performance in some
circumstances. If you notice poor performance you should consider
recompiling the programs with the newer compiler.

Running LE programs: LE programs are programs that were compiled with a
LE-compliant compiler. CA-IDMS/DC supports these LE-compliant compilers:

■ PL/I for VM/ESA

■ PL/I for OS/390

For convenience, PL/I programs compiled with an LE-compliant compiler are referred
to as "LE PL/I" programs below.

F-4 CA-IDMS DML Reference — PL/I

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

F.3 Running LE-compliant compiler programs under
CA-IDMS/DC

This section describes what you need to do to compile, link, and run a program
compiled with an LE-compliant compiler.

General preparation: The next paragraph describes how to prepare LE-compiled
programs for use with CA-IDMS/DC:

For non-reentrant PL/I programs compiled under Release 2.3 or earlier, you must
specify OPTIONS (MAIN) in the PL/I PROCEDURE statement for the entry
procedure. For reentrant PL/I Release 2.3 or earlier programs, you must specify
OPTIONS (MAIN,REENTRANT). For AD/CYCLE (LE-COMPLIANT), PL/I
programs, you must specify OPTIONS (REENTRANT,FETCHABLE).

Note: RHDCLENT/RHDCLINT, required in earlier releases, is not needed for
CA-IDMS/DC/UCF at release levels 14.1 and above.

Run-time options: The IBM Language Environment provides numerous options
which control how programs operate at run-time. The default values are designed to
be suitable in a batch environment. Therefore, it is necessary to modify some values
for applications which are to run in a CA-IDMS/DC/UCF online system.

Note: As stated in the introduction, the information in this appendix does not apply
to programs which run in a CICS or other region even if they access
CA-IDMS via DML or SQL commands. It does apply to programs which run
a CA-IDMS/DC/UCF online system which are invoked from another front-end
via UCF, such as a CA-ADS application which is accessed via UCFCICS from
a CICS front-end.

The IBM Language Environment provides a number of ways to specify run-time
options. The following two methods are supported for CA-IDMS/DC PL/I online
programs:

■ Modify, assemble, and link the IBM-supplied CEEUOPT module. Link the
resulting module with each application program.

The following source is provided as a sample for assembling a CEEUOPT module
for use with table procedures or online CA-IDMS/DC/UCF programs compiled in
an IBM Language Environment for OS/390 and VM/ESA. The sample options
may not be appropriate at all sites, but they provide guidelines which will be valid
for most table procedures and online programs. These guidelines are for use with
CA-IDMS Release 10.21 Premium Support and above.

Note that various storage size run-time options should be reduced from the normal
IBM installed defaults. Storage allocation in a CA-IDMS/DC/UCF system is most
efficient (in terms of CPU utilization) if LE storage parameters are specified as
sixteen bytes less than a multiple of 4096. Smaller sizes should be used for some
parameters to avoid wasting storage.

Appendix F. Considerations for IBM Language Environment F-5

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

See the IBM Language Environment for OS/390 Customization manual for
information on creating an application-specific run-time options module. Once a
CEEUOPT load module is created, it should be linked with each table procedure
or online CA-IDMS/DC/UCF program compiled under Language Environment for
OS/390 and VM/ESA.

�/��/

�/� Parameters which are not shown below do not need to be �/

�/� coded. The IBM default values should be appropriate for �/

�/� those parameters. �/

�/� �/

CEEUOPT CSECT CEE��16�

CEEUOPT AMODE ANY CEE��17�

CEEUOPT RMODE ANY CEE��18�

 CEEXOPT ABPERC=(NONE), XCEE��19�

 ABTERMENC=(RETCODE), XCEE��2��

 AIXBLD=(OFF), XCEE��21�

 ALL31=(ON), XCEE��22�

 ANYHEAP=(2�32,4�8�,ANYWHERE,FREE), XCEE��23�

 BELOWHEAP=(496,496,FREE), XCEE��24�

 CBLOPTS=(ON), XCEE��25�

 CBLPSHPOP=(OFF), XCEE��26�

 CBLQDA=(OFF), XCEE��27�

 CHECK=(OFF), XCEE��28�

 COUNTRY=(US), XCEE��29�

 DEBUG=(OFF), �8/�6/97| XCEE��3��

 DEPTHCONDLMT=(1�), XCEE��31�

 ENVAR=(''), XCEE��32�

 ERRCOUNT=(2�), XCEE��33�

 ERRUNIT=(6), XCEE��34�

 FILEHIST=(ON), XCEE��35�

 HEAP=(2�32,4�8�,ANYWHERE,KEEP,2�32,2�32), XCEE��36�

 INQPCOPN=(ON), XCEE��37�

 INTERRUPT=(OFF), XCEE��38�

 LIBSTACK=(496,496,FREE), XCEE��39�

 MSGFILE=(SYSOUT,FBA,121,�), XCEE��4��

 MSGQ=(15), XCEE��41�

 NATLANG=(ENU), XCEE��42�

 NOAUTOTASK=, XCEE��43�

 NONONIPTSTACK=(1��,2�32,BELOW,KEEP), XCEE��44�

 NOTEST=(ALL,�,PROMPT,INSPPREF), XCEE��45�

 NOUSRHDLR=(), XCEE��46�

 OCSTATUS=(ON), XCEE��47�

 PC=(OFF), XCEE��48�

 PLITASKCOUNT=(2�), XCEE��49�

 POSIX=(OFF), XCEE��5��

 PRTUNIT=(6), XCEE��51�

 PUNUNIT=(7), XCEE��52�

 RDRUNIT=(5), XCEE��53�

 RECPAD=(OFF), XCEE��54�

 RPTOPTS=(OFF), XCEE��55�

 RPTSTG=(OFF), XCEE��56�

 RTEREUS=(OFF), XCEE��57�

 SIMVRD=(OFF), XCEE��58�

 STACK=(2�32,8176,ANY,KEEP), XCEE��59�

 STORAGE=(NONE,NONE,NONE,4�8�), XCEE��6��

 TERMTHDACT=(QUIET), XCEE��61�

 THREADHEAP=(�1��,�1��,,ANYWHERE,KEEP), XCEE��62�

 TRACE=(OFF,����,DUMP,LE=�), XCEE��63�

 TRAP=(ON), XCEE��64�

 UPSI=(��������), XCEE��65�

 VCTRSAVE=(OFF), XCEE��66�

 XUFLOW=(AUTO) CEE��67�

DC C'5688-198 (C) COPYRIGHT IBM CORP. 1991, 1995. ' CEE��68�

DC C'LICENSED MATERIALS - PROPERTY OF IBM' CEE��69�

 END CEE��7��

Note: Refer to the IBM Language Environment for OS/390 Customization manual
for more information.

F-6 CA-IDMS DML Reference — PL/I

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

■ Assemble and link a specialized CEEDOPT module. If this method is chosen,
special copies of the IBM modules CEEBINIT and CEEPIPI must be maintained
for use with online CA-IDMS/DC/UCF systems only. This raises special
maintenance considerations:

– Removes the necessity of linking a CEEUOPT with each program.

– Allows changes to run-time options for an entire CA-IDMS/DC system or
systems without the need to relink individual application programs.

When running PL/I programs on an online CA-IDMS/DC/UCF system with IBM's
Language Environment, excessive amounts of storage will be used. This is the
result of the default run-time options set up during the installation of Language
Environment.

In addition, some default LE run-time options may cause unnecessary CPU
consumption regardless of the language level. A few default options are not
compatible with some or all releases of CA-IDMS/DC/UCF.

The following information documents how to tailor the run-time options for a
specific CA-IDMS/DC/UCF system. The options shown below have been
determined to be appropriate for most sites. Individual sites may wish to modify
certain options because applications are known to use a particular amount of
storage or for some other purpose.

The run-time options can be tailored by compiling a CEEXOPT macro and
creating a USERMOD based on the sample in member CEEWDOPT in the
SCEESAMP library. Refer to the IBM Language Environment for OS/390
Customization manual for more details.

Note: This procedure is not recommended for most sites.

If the CEEWDOPT sample JCL is used, the run-time options will be changed for
all applications which use LE run-time support, not just online CA-IDMS/DC/UCF
applications. The options which are appropriate for online applications are likely
to be inappropriate for CA-IDMS batch applications or non-IDMS applications.

An alternative procedure which allows for tailoring run-time options for only
CA-IDMS/DC/UCF online applications is presented below. If this procedure is
followed, it will also remove the necessity for linking a tailored CEEUOPT
module with each online CA-IDMS/DC/UCF application program compiled under
LE compilers.

Notes:

– The parameters shown below are valid for LE Version 1.8.0. Other releases
of LE may have more or fewer parameters.

All parameters supplied in the site IBM SCEESAMP library member
CEEDOPT should be specified. Use the IBM-supplied defaults for any
parameters which are not shown below. Use the defaults in this appendix for
any parameters which are shown below and which also appear in the
SCEESAMP member. Remove any parameters or subparameters which are
shown below but which do not exist in the SCEESAMP member for your site.

Appendix F. Considerations for IBM Language Environment F-7

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

Be certain that the macro library used to compile CEEDOPT is from the same
release as the CEEPIPI and CEEPLPKA load modules which are to be
modified.

– The parameters shown below all specify the "OVR" option. This allows
individual applications to use different options by linking those applications
with a tailored version of CEEUOPT.

Alternatively, a site may opt to use the "NOOVR" option for some or all of
the parameters below. Then the CEEDOPT options will take effect regardless
of the options specified in any CEEUOPT module linked with an individual
application. This may be useful if a site wishes to change the run-time
options for all online applications in one or more CA-IDMS/DC/UCF systems
without relinking each application.

At this time, IBM does not have SMP support for changing the run-time options
for some systems and not for others. However, the options can be modified for a
particular DC system if two IBM modules are relinked outside of SMP using a
tailored CEEDOPT CSECT. IBM technical support has confirmed that this
technique is valid.

The two modules are CEEBINIT and CEEPIPI. They must be linked into a load
library which is included in the CDMSLIB concattenation in the
CA-IDMS/DC/UCF startup JCL AHEAD of the IBM SCEERUN load library.
This library should be included ONLY in the startup JCL for online systems.

The sample JCL below can be used as a basis for making these changes. Note
that after any IBM LE maintenance is performed, the JCL below should be rerun
to include the new IBM maintenance.

The sample macro shown below is appropriate for most IDMS online applications
and can be used to build the appropriate CEEDOPT CSECT whether the changes
are made inside or outside of SMP.

F-8 CA-IDMS DML Reference — PL/I

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

//���

//������������������������ ASSEMBLE CEEDOPT �������������������������

//���

//ASM EXEC PGM=ASMA9�,PARM='DECK,NOOBJECT'

//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB

// DD DISP=SHR,DSN=SYS1.AMODGEN

// DD DISP=SHR,DSN=CEE.SCEEMAC ��IBM CEE MACLIB

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1)),DSN=&&WORK1

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1)),DSN=&&WORK2

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1)),DSN=&&WORK3

//SYSPUNCH DD DISP=(NEW,PASS),SPACE=(TRK,(1�,5)),UNIT=SYSDA,

// DSN=&&OBJECT

//SYSIN DD �

�/��/ ��1�����

CEEDOPT CSECT ��11����

CEEDOPT AMODE ANY ��12����

CEEDOPT RMODE ANY ��13����

 CEEXOPT ABPERC=((NONE),OVR), X��14����

 ABTERMENC=((RETCODE),OVR), X��15����

 AIXBLD=((OFF),OVR), X��16����

 ALL31=((ON),OVR), X��17����

 ANYHEAP=((2�32,4�8�,ANYWHERE,FREE),OVR), X��18����

 BELOWHEAP=((496,496,FREE),OVR), X��19����

 CBLOPTS=((ON),OVR), X��2�����

 CBLPSHPOP=((OFF),OVR), X��21����

 CBLQDA=((OFF),OVR), X��22����

 CHECK=((OFF),OVR), X��23����

 COUNTRY=((US),OVR), X��24����

 DEBUG=((OFF),OVR), X��25����

 DEPTHCONDLMT=((1�),OVR), X��26����

 ENVAR=((''),OVR), X��27����

 ERRCOUNT=((2�),OVR), X��28����

 ERRUNIT=((6),OVR), X��283���

 FILEHIST=((ON),OVR), X��286���

 HEAP=((2�32,4�8�,ANYWHERE,KEEP,2�32,2�32),OVR), X��29����

 HEAPCHK=((OFF,1,�),OVR), X��292���

 HEAPPOOLS=((OFF,8,1�,32,1�,128,1�,256,1�,1�24,1�,2�48, X��293���

 1�),OVR), X��294���

 INQPCOPN=((ON),OVR), X��295���

 INTERRUPT=((OFF),OVR), X��3�����

 LIBRARY=((SYSCEE),OVR), X��3�5���

 LIBSTACK=((496,496,FREE),OVR), X��31����

 MSGFILE=((SYSOUT,FBA,121,�,NOENQ),OVR), X��32499�

 MSGQ=((15),OVR), X��33����

 NATLANG=((ENU),OVR), X��34����

 NOAUTOTASK=(OVR), X��343���

 NONONIPTSTACK=((1��,2�32,ANY,KEEP),OVR), X��347���

 NOTEST=((ALL,�,PROMPT,INSPPREF),OVR), X��35����

 NOUSRHDLR=((),OVR), X��351���

 OCSTATUS=((ON),OVR), X��353���

 PC=((OFF),OVR), X��355���

 PLITASKCOUNT=((2�),OVR), X��357���

 POSIX=((OFF),OVR), X��36����

 PROFILE=((OFF,''),OVR), X��361���

 PRTUNIT=((6),OVR), X��362���

 PUNUNIT=((7),OVR), X��364���

Appendix F. Considerations for IBM Language Environment F-9

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

 RDRUNIT=((5),OVR), X��366���

 RECPAD=((OFF),OVR), X��368���

 RPTOPTS=((OFF),OVR), X��37����

 RPTSTG=((OFF),OVR), X��38����

 RTEREUS=((OFF),OVR), X��39����

 RTLS=((OFF),OVR), X��395���

 SIMVRD=((OFF),OVR), X��4�����

 STACK=((2�32,8176,ANY,KEEP),OVR), X��41����

 STORAGE=((NONE,NONE,NONE,�),OVR), X��42����

 TERMTHDACT=((QUIET),OVR), X��43����

 THREADHEAP=((�1��,�1��,ANYWHERE,KEEP),OVR), X����435�

 TRACE=((OFF,��,DUMP,LE=�),OVR), X��44����

 TRAP=((ON),OVR), X��45����

 UPSI=((��������),OVR), X��46����

 VCTRSAVE=((OFF),OVR), X��47����

 VERSION=((''),OVR), X��475���

 XUFLOW=((AUTO),OVR) ��48����

 END ��51����

/�

//���

//������������ LINK EDIT THE OBJECT DECK �������������������������

//���

//LINK EXEC PGM=IEWL,

// PARM='LET,LIST,XREF,MAP,XREF,RENT,REUS,REFR'

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1�24,(1��,1�))

//SYSLMOD DD DISP=SHR,DSN=SITE.SPECIAL.CDMSLIB

//SYSLIB DD DISP=SHR,DSN=CEE.SCEERUN ��IBM CEE LOADLIB

//OBJECT DD DISP=(OLD,DELETE),DSN=&&OBJECT

//SYSLIN DD �

 INCLUDE OBJECT

 INCLUDE SYSLIB(CEEPIPI)

 ENTRY CEEPIPI

 NAME CEEPIPI(R)

 INCLUDE OBJECT

 INCLUDE SYSLIB(CEEBINIT)

 ENTRY CEEBINIT

 NAME CEEBINIT(R)

/�

//

Except as discussed below, the IBM-supplied default run-time options can be used
with any site-specific desired modifications. Note that the MSGFILE parameter is
ignored and messages are sent to the CA-IDMS log file.

Recommended settings for certain parameters are as shown below. For more details
on these parameters see the IBM Language Environment for OS/390 Customization
manual.

■ ABTERMENC=(RETCODE) or ABTERMENC=(ABEND)

This parameter affects the action taken when an LE enclave ends with an
unhandled condition of severity 2 or higher. If RETCODE code is specified, the
DC task will abend with message DC128004. If ABEND is specified, the DC
task will abend with a Uxxx where xxx corresponds to the hexidecimal value of
the user abend code set by LE. For example, an LE user abend 4093 would result
in a DC task abend with code UFFD.

 ■ ALL31=(ON)

This parameter will minimize the amount of below-the-line storage, which will be
allocated by LE. This parameter requires that no COBOL programs are compiled
with compiler option DATA(24) and that no programs which will utilize the
run-time LE are linked AMODE(24).

F-10 CA-IDMS DML Reference — PL/I

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

 ■ INTERRUPT=(OFF)

Attention interrupts are handled by the CA-IDMS/DC system and not by LE
run-time support. Application PL/I programs can test for attention interrupts using
the DC-ATTN-INT condition name under LE just as with earlier PL/I run-time
environments.

 ■ POSIX=(OFF)

POSIX is not supported under CA-IDMS/DC/UCF.

■ RPTSTG=(OFF) or RPTSTG=(ON)

Normally OFF should be specified. OFF must be specified for systems prior to
Release 14.1.

The purpose of RPTSTG is to determine the storage utilization for a particular
application. The report is produced at the end of a LE process and is written to
the CA-IDMS log file. For efficiency reasons, the termination phase of LE
processing is normally not executed in an online DC environment. If it is
necessary to obtain storage information for a particular application, optional bit
196 can be set (see Appendix M in the CA-IDMS DML Reference - COBOL
manual). Note that this option adversely affects performance. Storage reports are
therefore normally produced only in a test or development system.

■ TERMTHDACT=(QUIET) or TERMTHDACT=(TRACE)

This option controls the extent of LE run-time information which will be supplied
when an application terminates. All messages will be written to the DC log file.

■ TRAP=(ON) or TRAP=(OFF)

If ON is specified, program checks in an LE application will result in IBM LE
error-handling being put into effect. PL/I-specific and LE messages will be
written to the log. After these messages are written and the LE process ends
abnormally, the DC task will abend with message DC128004 and a task snap will
be taken.

If OFF is specified, program checks in an LE application will result in an
immediate task snap. This is similar to the result in a PL/I Release 2.3 run-time
environment. No LE messages related to the program check will be written.
Furthermore, if any PL/I applications are included in the online system, any ON
ERROR clauses will not be handled properly.

In addition to the parameters above, we strongly recommend that you use smaller
values than the default ones for the various heap (e.g., ANYHEAP, BELOWHEAP,
HEAP) and stack (e.g., LIBSTACK, STACK) parameters since these are allocated on a
task thread basis. Storage allocation is most efficient if relatively large values are
specified as sixteen bytes less than a multiple of 4096. Smaller values than 4096
should be set for some parameters to avoid wasting storage. The following values
have been found to be suitable for most CA-IDMS/DC/UCF systems:

 ANYHEAP=(2032,8176,ANYWHERE,FREE)
 BELOWHEAP=(496,496,FREE)
 HEAP=(2032,4080,ANYWHERE,KEEP,4080,4080)

Appendix F. Considerations for IBM Language Environment F-11

F.3 Running LE-compliant compiler programs under CA-IDMS/DC

 LIBSTACK=(100,2032,FREE)
 NONONIPTSTACK=(4080,4080,BELOW,KEEP)
 STACK=(4080,8176,ANY,KEEP)
 STORAGE=(NONE,NONE,NONE,4080)
 THREADHEAP=(2032,4080,,ANYWHERE,KEEP)

F-12 CA-IDMS DML Reference — PL/I

F.4 Supported LE functions

F.4 Supported LE functions

CA-IDMS/DC supports these LE functions:

 ■ Math services

■ National language support services

CA-IDMS/DC also supports storage management services, but for performance
reasons, they are not recommended. The storage management services are:

■ CEECRHP: Create heap segment

■ CEECZST: Re-allocate (change size of) heap storage

■ CEEDSHP: Discard heap segment

■ CEEFRST: Free heap storage

■ CEEGTST: Get heap storage

Appendix F. Considerations for IBM Language Environment F-13

F.5 Unsupported LE functions

F.5 Unsupported LE functions

CA-IDMS/DC does not support the following LE functions:

■ CEE3PRM: Get exec parms

■ CEETDLI: Call IMS

■ CEETEST: Invoke debugging environment

■ Date and time services — Use the DML GET TIME command instead

F-14 CA-IDMS DML Reference — PL/I

Appendix G. 18-Byte Communications Blocks

G.1 Overview . G-3

Appendix G. 18-Byte Communications Blocks G-1

G-2 CA-IDMS DML Reference — PL/I

G.1 Overview

 G.1 Overview

As an alternative to using the 16-byte IDMS-DB and IDMS-DC communications
blocks, you can specify 18-byte blocks. The difference between 16-byte blocks and
18-byte blocks is that an 18-byte block contains an additional 18-byte filler field, and
the following fields are 18 bytes instead of 16 bytes:

 ■ RECORD_NAME

 ■ AREA_NAME

 ■ ERROR_SET

 ■ ERROR_RECORD

 ■ ERROR_AREA

This appendix describes where to specify an 18-byte communications block and
contains figures showing these blocks.

�� For descriptions of the fields in IDMS-DB and IDMS-DC communications blocks,
see 3.2.1, “IDMS-DB communications block” on page 3-4 and 3.2.3, “IDMS-DC
communications block” on page 3-12.

Where to specify the 18-byte block: For PL/I, you specify an 18-byte
communications block in the SUBSCHEMA_NAMES LENGTH clause of the
DECLARE SUBSCHEMA precompiler-directive statement (see 5.2, “DECLARE
SUBSCHEMA” on page 5-4).

18-byte IDMS-DB block: The following figure shows the 18-byte IDMS-DB
communications block.

Appendix G. 18-Byte Communications Blocks G-3

G.1 Overview

 ┌──────────────────────────────────────┐

| 18-byte IDMS-DB communications block |

 └──────────────────────────────────────┘

 Length Suggested
 Field Data Type (bytes) Initial Value
 ┌──────────────┐

� | 1 8 | PROGRAM_NAME Alphanumeric 8 Program Name

 ├──────────┬───┘

 | 9 12 | ERROR_STATUS Alphanumeric 4 '14��'

 ├──────────┤

 | 13 16 | DBKEY Binary 4 (Fullword) ����

 ├──────────┴───────┐

| 17 34 | RECORD_NAME Alphanumeric 18 Spaces

 ├──────────────────┤

 | 35 52 | AREA_NAME Alphanumeric 18 Spaces

 ├──────────────────┤

 | 53 7� | FILLER Alphanumeric 18 Spaces

 ├──────────────────┤

 | 71 88 | ERROR_SET Alphanumeric 18 Spaces

 ├──────────────────┤

 | 89 1�6 | ERROR_RECORD Alphanumeric 18 Spaces

 ├──────────────────┤

 | 1�7 124 | ERROR_AREA Alphanumeric 18 Spaces

 ├──────────────────┤

| 125 128 | PAGE_INFO Binary 4 (Fullword) ����

 ├────────────┬───┬─┴───┐

| 125 |...| 224 | IDBMSCOM_AREA Alphanumeric 1�� Spaces

 ├──────────┬─┘ └─────┘

| 225 228 | DIRECT_DBKEY Binary 4 (Fullword) ����

 └──────────┘

┌──────┬──────────────┐

| | 229 235 | Reserved for system Alphanumeric 7 Spaces

| ├─────┬────────┘

| NON- | 236 | FILLER ... 1 ...

| ├─────┴────┐

| CICS | 237 24� | RECORD_OCCUR Binary 4 (Fullword) ����

| ├──────────┤

| | 241 244 | DML_SEQUENCE Binary 4 (Fullword) ����

└──────┴──────────┘

┌──────┬──────────────────┐

| | 229 244 | FILLER ... 16 Spaces

| ├──────────────┬───┘

| | 245 251 | Reserved for system Alphanumeric 7 Spaces

| ├─────┬────────┘

| | 252 | FILLER ... 1 ...

| CICS ├─────┴────┐

| | 253 256 | RECORD_OCCUR Binary 4 (Fullword) ����

| ├──────────┤

| | 257 26� | DML_SEQUENCE Binary 4 (Fullword) ����

└──────┴──────────┘

� word aligned

18-byte IDMS-DC block: The following figure shows the 18-byte IDMS-DC
communications block.

G-4 CA-IDMS DML Reference — PL/I

G.1 Overview

 ┌──────────────────────────────────────┐

| 18-byte IDMS-DC communications block |

 └──────────────────────────────────────┘

 Length Suggested
 Field Data Type (bytes) Initial Value
 ┌──────────────┐

� | 1 8 | PROGRAM Alphanumeric 8 Program Name

 ├──────────┬───┘

 | 9 12 | ERROR_STATUS Alphanumeric 4 '14��'

 ├──────────┤

| 13 16 | DBKEY Binary 4 (Fullword) ����

 ├──────────┴───────┐

 | 17 34 | RECORD_NAME Alphanumeric 18 Spaces

 ├──────────────────┤

 | 35 52 | AREA_NAME Alphanumeric 18 Spaces

 ├──────────────────┤

 | 53 7� | FILLER Alphanumeric 18 Spaces

 ├──────────────────┤

 | 71 88 | ERROR_SET Alphanumeric 18 Spaces

 ├──────────────────┤

 | 89 1�6 | ERROR_RECORD Alphanumeric 18 Spaces

 ├──────────────────┤

 | 1�7 124 | ERROR_AREA Alphanumeric 18 Spaces

 ├──────────────────┤

 | 125 128 | PAGE_INFO Binary 4 (Fullword) ����

 ├────────────┬────┬┴───┐

| 125 |... |224 | IDBMSCOM_AREA Alphanumeric 1�� Spaces

 ├──────────┬─┘ └────┘

 | 225 228 | DIRECT_DBKEY Binary 4 ����

 ├──────────┴─┐ ┌────┐

| 229 |... |328 | DCBMSCOM_AREA Alphanumeric 1�� Spaces

 ├──────────┬─┘ └────┘

 | 329 332 | SSC_ERRSTAT_SAVE Alphanumeric 4 Spaces

 ├──────────┤

 | 333 336 | SSC_DMLSEQ_SAVE Binary 4 (Fullword) ����

 ├──────────┤

 | 337 34� | DML_SEQUENCE Binary 4 (Fullword) ����

 ├──────────┤

 | 341 344 | RECORD_OCCUR Binary 4 (Fullword) ����

 ├──────────┤

 | 345 348 | SUBSCHEMA_CTRL_END Alphanumeric 4 Spaces

 └──────────┘

� word aligned

Appendix G. 18-Byte Communications Blocks G-5

G.1 Overview

G-6 CA-IDMS DML Reference — PL/I

 Index

Numerics
18-byte communications blocks G-3

A
ABEND 6-13
ACCEPT 6-14—6-15
ACCEPT BIND RECORD 6-16
ACCEPT DBKEY FROM CURRENCY 6-17—6-18
ACCEPT DBKEY RELATIVE TO

CURRENCY 6-19—6-20
ACCEPT IDMS STATISTICS 6-21—6-22
ACCEPT PAGE_INFO 6-23
ACCEPT PROCEDURE CONTROL LOCATION 6-24
ACCEPT TRANSACTION STATISTICS 6-25—6-27
AID keys

See attention ID keys
application program information block 6-32
ATTACH 6-28—6-29
attention ID keys 6-108
automatic editing/error handling 6-114, 6-142, 6-143

B
basic mode

READ TERMINAL 6-161—6-163
WRITE TERMINAL 6-209—6-210
WRITE THEN READ TERMINAL 6-211—6-214

batch processing 1-3
BIND MAP 6-30—6-31
BIND MAP statement 5-15
BIND PROCEDURE 6-32—6-33
BIND RECORD 6-34—6-35
BIND RUN_UNIT 6-36—6-38
BIND TASK 6-39
BIND TRANSACTION STATISTICS 6-40
boolean selection criteria

See WHERE clause (LRF)

C
CA-IDMS/DC F-3, F-14

considerations for IBM Language
Environment F-3—F-14

CA-IDMS/DC programming considerations E-4
call expansions

See call formats

call formats B-3—B-19
CALL sequences

CA-IDMS/DB 5-5
Non CA-IDMS/DC TP monitors 5-6

CHANGE PRIORITY 6-41
CHECK TERMINAL 6-42
checkpoints

COMMIT 6-43
FINISH 6-89—6-90
ROLLBACK 6-170—6-171

comment generation 2-6
COMMIT 6-43
communications blocks 3-4—3-16
communications blocks, 18-byte G-3
comparison operators

See WHERE clause (LRF)
compiler options

comment generation 2-6
dictionary ready override 2-4
list generation 2-7
log suppression 2-8
PL/I compiler option usage 2-5

compiling CA-IDMS programs 1-9
CONNECT 6-44—6-46
control statements

FINISH 6-89—6-90
IF 6-106—6-107
KEEP 6-116
READY 6-164—6-166
ROLLBACK 6-170—6-171

cursor position
See also INQUIRE MAP
MODIFY MAP 6-140

D
data communications 1-4
data structure diagram E-31
date

See GET TIME
DC RETURN 6-47—6-49
DC-BATCH 3-4, 3-12, 3-17, 5-5, 6-39, 6-96, 6-156
DC_BATCH 3-4, 5-6, 5-11

allowable DML commands 5-5
DCMT VARY DYNAMIC PROGRAM 6-48
DCMT VARY DYNAMIC TASK 6-28, 6-47, 6-176
DCMT VARY REPORT DELETE 6-207

Index X-1

DCMT VARY REPORT RELEASE 6-207
DDLDCQUE area 6-155
DDLDCRUN area 6-155
DDLDCSCR area 6-157
DDLDML area 2-4
DEBUG option 5-6
DECLARE MAP statement 5-7
DECLARE SUBSCHEMA statement 5-4—5-6

See also operating mode
DELETE QUEUE 6-50
DELETE SCRATCH 6-51—6-52
DELETE TABLE 6-53
DEQUEUE 6-54
destination

SEND MESSAGE 6-172
WRITE PRINTER 6-207

dictionary ready override 2-4
See also READY

DISCONNECT 6-55—6-57
Distributed Database System 6-39
DML precompiler

execution of 1-9, A-4
general discussion 1-9
keywords C-3
precompiler options 2-3—2-8
precompiler-directive statements 5-3—5-19
with non-IDMS-DC TP monitor D-3

DML precompiler options
See precompiler options

 DML statements
functions 6-4—6-5
grouped by DB functions 6-6—6-8
grouped by DC functions 6-8—6-12

DML usage mode 5-8
DMLIST (compiler option) 2-7
DMLP precompiler

See DML precompiler
dump

ABEND 6-13

E
ECB

See event control block (ECB)
END LINE TERMINAL SESSION 6-58
END TRANSACTION STATISTICS 6-59
ENDPAGE 6-60
ENQUEUE 6-61—6-63
ERASE 6-64—6-69
ERASE (LRF) 6-70—6-71

error detection 3-28
See also automatic editing/error handling

error-status codes
DC/UCF major codes 3-23

ERROR_STATUS field 3-17
event control block (ECB) 6-154, 6-175, 6-193
executing CA-IDMS programs 1-11
execution options

COUNT E-4, E-5
FLOW E-4
REPORT E-4, E-5

F
FIND/OBTAIN 6-72
FIND/OBTAIN CALC/DUPLICATE 6-72—6-74
FIND/OBTAIN CURRENT 6-74—6-77
FIND/OBTAIN DBKEY 6-77—6-79
FIND/OBTAIN OWNER 6-79—6-81
FIND/OBTAIN WITHIN SET USING SORT

KEY 6-81—6-83
FIND/OBTAIN WITHIN SET/AREA 6-83
FINISH 6-89—6-90
FREE STORAGE 6-91

G
GET 6-92—6-93
GET QUEUE 6-94—6-96
GET SCRATCH 6-97—6-99
GET STORAGE 6-100—6-103
GET TIME 6-104—6-105

I
IBM Language Environment F-3, F-14

using F-3—F-14
IDMS CALL sequences

CA-IDMS/DC 5-5
DC_BATCH 5-5

IDMS-DB communications block 3-4
field descriptions 3-5

IDMS-DB communications block, 18-byte G-3
IDMS-DC communications block 3-12—3-16, 5-3

See also error-status codes
field descriptions 3-13

IDMS-DC communications block, 18-byte G-3
IDMS_STATUS routine 3-28—3-30
IF 6-106—6-107
INCLUDE IDMS (MAP_BINDS) statement 5-15

X-2 CA-IDMS DML Reference — PL/I

INCLUDE IDMS (SUBSCHEMA_BINDS)
statement 5-18

INCLUDE IDMS MAP_BINDS statement
INCLUDE IDMS MODULE statement 5-16—5-17
INCLUDE IDMS statement 5-8—5-14
INCLUDE IDMS SUBSCHEMA_BINDS statement
indexing

RETURN 6-167
INQUIRE MAP

See also mapping mode
general discussion 6-108
moving map-related data 6-108—6-109
testing for cursor position 6-111
testing for global map input conditions 6-110—6-111
testing for input error conditions 6-112—6-114

integrated indexing
FIND/OBTAIN WITHIN SET USING SORT

KEY 6-81
RETURN 6-169

J
JCL A-3—A-20
journal file

COMMIT 6-43
FINISH 6-89—6-90
ROLLBACK 6-170—6-171
WRITE JOURNAL 6-195—6-196

K
KEEP 6-116
KEEP LONGTERM 6-117—6-121
kept storage

FREE STORAGE 6-91
GET STORAGE 6-100—6-103

keywords C-3—C-5

L
LE, defined F-3
line mode

READ LINE FROM TERMINAL 6-159—6-160
WRITE LINE TO TERMINAL 6-197—6-199

list generation 2-7
LOAD TABLE 6-122—6-123
locks

See record locks
log suppression 2-8
Logical Record Facility

error codes 6-220—6-221
logical-record clauses 6-215—6-221

Logical Record Facility (continued)
MODIFY RECORD 6-149—6-150
OBTAIN RECORD 6-151—6-153
ON clause 6-219—6-220
STORE RECORD 6-188—6-189
WHERE clause 6-215—6-219

logical terminal 6-14, 6-40, 6-117, 6-173
logical-record clauses

general discussion 6-215
ON clause 6-219—6-220
WHERE 6-215—6-219

logical-record request control (LRC) block 3-11—3-12
field descriptions 3-11

LR usage mode 5-8
LRC block

See logical-record request control (LRC) block
LRF

See Logical Record Facility

M
map

attributes 6-144
field list 6-113
message area 6-131
modifying 6-138

MAP IN 6-124—6-128
MAP OUT 6-129—6-134
MAP OUTIN 6-135—6-137
map request block (MRB) 6-30, 6-138
mapping mode

INQUIRE MAP 6-108—6-115
MAP IN 6-124—6-128
MAP OUT 6-129—6-134
MAP OUTIN 6-135—6-137
MODIFY MAP 6-138—6-145
STARTPAGE 6-181—6-183

MIXED usage mode 5-9
modification statements

MODIFY RECORD 6-146—6-148
STORE RECORD 6-184—6-187

MODIFY MAP 6-138—6-145
MODIFY RECORD 6-146—6-148
MODIFY RECORD (LRF) 6-149—6-150
MRB

See map request block (MRB)

N
native mode

MAP IN 6-125

Index X-3

native mode (continued)
WRITE PRINTER 6-205, 6-206

Navigational DML statements 1-5
node 6-36
NODMLIST (compiler option) 2-7

O
OBTAIN

See FIND/OBTAIN statements
OBTAIN RECORD (LRF) 6-151—6-153
ON clause (LRF) 6-219—6-220

expanded syntax 6-220
online DML statements 1-8
online processing 1-4
operating mode 5-5—5-6
operator's console 6-200
OS/390 JCL A-6

P
page information 6-23

ACCEPT PAGE_INFO 6-23
pageable maps

See mapping mode
PL/I compiler 1-10, A-4
PL/I compiler option usage 2-5
PL/I operating modes

standard PL/I operating modes 5-6
PL/I program, samples

batch E-6
online E-18

PL/I standard modules 5-16
POST 6-154
precompiler

See DML precompiler
precompiler options 2-3—2-8

log suppression 2-8
precompiler-directive statements 5-19

DECLARE MAP 5-7
DECLARE SUBSCHEMA 5-4—5-6
INCLUDE IDMS 5-8—5-14
INCLUDE IDMS (MAP_BINDS) 5-15
INCLUDE IDMS (SUBSCHEMA_BINDS) 5-18
INCLUDE IDMS MODULE 5-16—5-17

print
classes 6-205
destinations 6-205
queues 6-205

PROCESS (compiler option) 2-5

program activity statistics
See log suppression

program expansion element (PXE) 3-12, 5-13
program management

DELETE TABLE 6-53
LOAD TABLE 6-122—6-123
TRANSFER 6-190—6-192

program registration 6-36
PROTECTED-UPDATE (compiler option) 2-4
PUT QUEUE 6-155—6-156
PUT SCRATCH 6-157—6-158
PXE

See program expansion element (PXE)

Q
queue management

GET QUEUE 6-94—6-96
PUT QUEUE 6-155—6-156

queues
BIND TASK 6-39
DELETE QUEUE 6-50—6-51
DEQUEUE 6-54
ENQUEUE 6-61—6-63

R
READ LINE FROM TERMINAL 6-159—6-160
READ TERMINAL 6-161—6-163
READY 6-164—6-166
record locks

KEEP 6-116
KEEP LONGTERM 6-121

recovery
ROLLBACK 6-170—6-171
WRITE JOURNAL 6-195—6-196

reentrant code E-4
RETRIEVAL (compiler option) 2-4
retrieval statements

FIND/OBTAIN 6-72
FIND/OBTAIN CALC/DUPLICATE 6-72—6-74
FIND/OBTAIN CURRENT 6-74—6-77
FIND/OBTAIN DBKEY 6-77—6-79
FIND/OBTAIN OWNER 6-79—6-81
FIND/OBTAIN WITHIN SET USING SORT

KEY 6-81—6-83
FIND/OBTAIN WITHIN SET/AREA 6-83—6-88
GET 6-92—6-93
OBTAIN RECORD 6-151—6-153

RETURN 6-167—6-169

X-4 CA-IDMS DML Reference — PL/I

ROLLBACK 6-170—6-171

S
SCHEMA-COMMENTS (compiler option) 2-6
scratch management

GET SCRATCH 6-97—6-99
PUT SCRATCH 6-157—6-158

selection criteria
See WHERE clause (LRF)

SEND MESSAGE 6-172—6-174
Sequential Processing Facility

RETURN 6-169
SET TIMER 6-175—6-178
SNAP 6-179—6-180
source statement listing

See compiler options
See list generation

STARTPAGE 6-181—6-183
status codes

data communications major codes 3-23
data communications minor codes 3-23
database major codes 3-17
database minor codes 3-18
DC/UCF minor codes 3-23, 3-24, 3-25, 3-26, 3-27

storage management
FREE STORAGE 6-91
GET STORAGE 6-100—6-103

STORE RECORD 6-184—6-187
STORE RECORD (LRF) 6-188—6-189
subschema usage modes

DML 5-8
LR 5-8
MIXED 5-9

suppress log
See log suppression

T
tables

DELETE TABLE 6-53
LOAD TABLE 6-122—6-123

task management
POST 6-154
WAIT 6-193—6-194

teleprocessing monitors
coding requirements (table) D-3
notes to users of D-3—D-4
operating modes for use with 5-6

terminal management
INQUIRE MAP 6-108—6-115

terminal management (continued)
MAP IN 6-124—6-128
MAP OUT 6-129—6-134
MAP OUTIN 6-135—6-137
MODIFY MAP 6-138—6-145
READ LINE FROM TERMINAL 6-159—6-160
READ TERMINAL 6-161—6-163
STARTPAGE 6-181—6-183
WRITE PRINTER 6-205—6-208
WRITE TERMINAL 6-209—6-210
WRITE THEN READ TERMINAL 6-211—6-214

time
See GET TIME

time interval
See SET TIMER

time management
GET TIME 6-104—6-105
SET TIMER 6-175—6-178

transaction statistics block (TSB)
ACCEPT TRANSACTION

STATISTICS 6-25—6-27
BIND TRANSACTION STATISTICS 6-40
END TRANSACTION STATISTICS 6-59

TRANSFER 6-190—6-192
NORETURN (XCTL) parameter 6-191
RETURN (LINK) parameter 6-191

TSB
See transaction statistics block (TSB)

U
user storage

FREE STORAGE 6-91
GET STORAGE 6-100—6-103

utility functions
ACCEPT 6-14—6-15
KEEP LONGTERM 6-117—6-121
SEND MESSAGE 6-172—6-174
WRITE LOG 6-200—6-204

V
VM/ESA commands A-17
VSE/ESA JCL A-10

W
WAIT 6-193—6-194
WCC

See write control character (WCC)

Index X-5

WHERE clause (LRF) 6-215—6-219
expanded syntax 6-215—6-219

write control character (WCC) 6-141
WRITE JOURNAL 6-195—6-196
WRITE LINE TO TERMINAL 6-197—6-199
WRITE LOG 6-200—6-204
WRITE PRINTER 6-205—6-208
WRITE TERMINAL 6-209—6-210
WRITE THEN READ TERMINAL 6-211—6-214

X-6 CA-IDMS DML Reference — PL/I

	CA-IDMS DML Reference - PL/I
	Contents
	How to Use This Manual
	What this manual is about
	Who should use this manual
	What this manual contains
	How to proceed
	Related documents
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Introduction to CA- IDMS Data Manipulation Language
	1.1 Overview
	1.1.1 Batch processing
	1.1.2 Online processing

	1.2 Programming in the CA- IDMS environment
	1.2.1 Navigational DML
	1.2.2 SQL DML
	1.2.3 LRF DML
	1.2.4 CA- IDMS/ DC statements

	1.3 Compiling and executing programs
	1.3.1 Compiling programs
	1.3.2 Executing programs

	Chapter 2. DML Precompiler Options
	2.1 Overview
	2.2 Dictionary ready override
	2.3 PL/ I compiler option usage
	2.4 Comment generation
	2.5 List generation
	2.6 Log suppression

	Chapter 3. Communications Blocks and Error Detection
	3.1 Overview
	3.2 Communications blocks
	3.2.1 IDMS- DB communications block
	3.2.2 LRC block
	3.2.3 IDMS- DC communications block

	3.3 ERROR_ STATUS field and codes
	3.3.1 Database status codes
	3.3.2 Data communications status codes

	3.4 Error detection
	3.5 The effects of non- zero status on IDMS_ STATUS

	Chapter 4. Required PL/ I Declaratives
	4.1 Overview
	4.2 DECLARE IDMS
	4.3 DECLARE IDMSPLI
	4.4 DECLARE IDMSDCP
	4.5 DECLARE SQLXQ1
	4.6 DECLARE ADDR BUILTIN
	4.7 DECLARE ABORT
	4.8 DECLARE IDMSP

	Chapter 5. DML Precompiler- Directive Statements
	5.1 Overview
	5.2 DECLARE SUBSCHEMA
	5.3 DECLARE MAP
	5.4 INCLUDE IDMS
	5.5 INCLUDE IDMS (MAP_ BINDS)
	5.6 INCLUDE IDMS MODULE
	5.7 INCLUDE IDMS (SUBSCHEMA_ BINDS)
	5.8 INCLUDE IDMS (SUBSCHEMA_ RECORD_ BINDS)

	Chapter 6. Data Manipulation Language Statements
	6.1 Overview
	6.2 Functions of DML statements
	6.3 DML statements grouped by function
	6.3.1 DML statements (database)
	6.3.2 DML statements (data communications)

	6.4 ABEND (DC/ UCF)
	6.5 ACCEPT (DC/ UCF)
	6.6 ACCEPT BIND RECORD
	6.7 ACCEPT DBKEY FROM CURRENCY
	6.8 ACCEPT DBKEY RELATIVE TO CURRENCY
	6.9 ACCEPT IDMS STATISTICS
	6.10 ACCEPT PAGE_ INFO
	6.11 ACCEPT PROCEDURE CONTROL LOCATION
	6.12 ACCEPT TRANSACTION STATISTICS (DC/ UCF)
	6.13 ATTACH (DC/ UCF)
	6.14 BIND MAP (DC/ UCF)
	6.15 BIND PROCEDURE
	6.16 BIND RECORD
	6.17 BIND RUN_ UNIT
	6.18 BIND TASK (DC/ UCF)
	6.19 BIND TRANSACTION STATISTICS (DC/ UCF)
	6.20 CHANGE PRIORITY (DC/ UCF)
	6.21 CHECK TERMINAL (DC/ UCF)
	6.22 COMMIT
	6.23 CONNECT
	6.24 DC RETURN (DC/ UCF)
	6.25 DELETE QUEUE (DC/ UCF)
	6.26 DELETE SCRATCH (DC/ UCF)
	6.27 DELETE TABLE (DC/ UCF)
	6.28 DEQUEUE (DC/ UCF)
	6.29 DISCONNECT
	6.30 END LINE TERMINAL SESSION (DC/ UCF)
	6.31 END TRANSACTION STATISTICS (DC/ UCF)
	6.32 ENDPAGE (DC/ UCF)
	6.33 ENQUEUE (DC/ UCF)
	6.34 ERASE
	6.35 ERASE (LRF)
	6.36 FIND/ OBTAIN
	6.36.1 FIND/ OBTAIN CALC/ DUPLICATE
	6.36.2 FIND/ OBTAIN CURRENT
	6.36.3 FIND/ OBTAIN DBKEY
	6.36.4 FIND/ OBTAIN OWNER
	6.36.5 FIND/ OBTAIN WITHIN SET USING SORT KEY
	6.36.6 FIND/ OBTAIN WITHIN SET/ AREA

	6.37 FINISH
	6.38 FREE STORAGE (DC/ UCF)
	6.39 GET
	6.40 GET QUEUE (DC/ UCF)
	6.41 GET SCRATCH (DC/ UCF)
	6.42 GET STORAGE (DC/ UCF)
	6.43 GET TIME (DC/ UCF)
	6.44 IF
	6.45 INQUIRE MAP (DC/ UCF)
	6.45.1 Moving map- related data
	6.45.2 Testing for global map input conditions
	6.45.3 Testing for cursor position
	6.45.4 Testing for input error conditions

	6.46 KEEP
	6.47 KEEP LONGTERM (DC/ UCF)
	6.48 LOAD TABLE (DC/ UCF)
	6.49 MAP IN (DC/ UCF)
	6.50 MAP OUT (DC/ UCF)
	6.51 MAP OUTIN (DC/ UCF)
	6.52 MODIFY MAP (DC/ UCF)
	6.53 MODIFY RECORD
	6.54 MODIFY RECORD (LRF)
	6.55 OBTAIN (LRF)
	6.56 POST (DC/ UCF)
	6.57 PUT QUEUE (DC/ UCF)
	6.58 PUT SCRATCH (DC/ UCF)
	6.59 READ LINE FROM TERMINAL (DC/ UCF)
	6.60 READ TERMINAL (DC/ UCF)
	6.61 READY
	6.62 RETURN (DC/ UCF)
	6.63 ROLLBACK
	6.64 SEND MESSAGE (DC/ UCF)
	6.65 SET TIMER (DC/ UCF)
	6.66 SNAP (DC/ UCF)
	6.67 STARTPAGE (DC/ UCF)
	6.68 STORE RECORD
	6.69 STORE RECORD (LRF)
	6.70 TRANSFER (DC/ UCF)
	6.71 WAIT (DC/ UCF)
	6.72 WRITE JOURNAL (DC/ UCF)
	6.73 WRITE LINE TO TERMINAL (DC/ UCF)
	6.74 WRITE LOG (DC/ UCF)
	6.75 WRITE PRINTER (DC/ UCF)
	6.76 WRITE TERMINAL (DC/ UCF)
	6.77 WRITE THEN READ TERMINAL (DC/ UCF)
	6.78 Logical- record clauses (WHERE and ON)
	6.78.1 WHERE
	6.78.2 ON clause

	Appendix A. DML Precompile, PL/ I Compile, and Link- Edit JCL
	A. 1 About this appendix
	A. 2 Compiling a PL/ I program
	A. 2.1 Under OS/ 390
	A. 2.2 Under VSE/ ESA
	A. 2.3 Under VM/ ESA

	A. 3 Link- edit considerations

	Appendix B. Call Formats
	B. 1 About this appendix
	B. 2 CA- IDMS/ DB call formats
	B. 2.1 Control statements
	B. 2.2 Modification statements
	B. 2.3 Retrieval statements
	B. 2.4 ACCEPT statements
	B. 2.5 LRF DML statements

	B. 3 CA- IDMS/ DC call formats
	B. 3.1 Program management statements
	B. 3.2 Storage management statements
	B. 3.3 Task management statements
	B. 3.4 Time management statements
	B. 3.5 Scratch management statistics
	B. 3.6 Queue management statements
	B. 3.7 Terminal management statements
	B. 3.8 Utility statements
	B. 3.9 Recovery statements
	B. 3.10 DC_ BATCH statement

	Appendix C. Keywords
	C. 1 About this appendix

	Appendix D. Notes to Teleprocessing Monitor Users
	D. 1 About this appendix

	Appendix E. Sample Programs and Database Definition
	E. 1 About this appendix
	E. 2 CA- IDMS/ DC programming considerations
	E. 3 Sample batch program
	E. 3.1 Batch input to the DML precompiler
	E. 3.2 Output from the DML precompiler
	E. 3.3 Output from the PL/ I compiler

	E. 4 Sample online program
	E. 4.1 Application components
	E. 4.2 Application runtime requirements
	E. 4.3 Online input to the DML precompiler
	E. 4.4 Output from the DML precompiler
	E. 4.5 Output from the PL/ I compiler

	E. 5 EMPLOYEE database definition

	Appendix F. Considerations for IBM Language Environment
	F. 1 Overview
	F. 2 Considerations about LE runtime
	F. 3 Running LE- compliant compiler programs under CA- IDMS/ DC
	F. 4 Supported LE functions
	F. 5 Unsupported LE functions

	Appendix G. 18- Byte Communications Blocks
	G. 1 Overview

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

